Skip to main content

KDF Search Results

Displaying 1 - 10 of 665

Contact information about the submitter of this metadata record:
Author list: Maggie Davis, Matt Langholtz, Laurence Eaton, Chad Hellwinkel
Who should be contacted with questions relating to the data? (Principal investigator or primary developer of data product): Maggie Davis, davismr@ornl.gov

Organization:
DOE
Author:
Maggie Davis , Matt Langholtz , Laurence Eaton , Chad Hellwinkel
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Purpose of Repository Database

Organization:
DOE
Author:
Christopher Kinchin
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

on environment friendly and socio-economically sustainable renewable energy sources. However, commercial production of bioenergy is constrained by biomass supply uncertainty and associated costs. This study presents an integrated approach to determining the optimal biofuel supply chain considering biomass yield uncertainty. A two-stage stochastic mixed integer linear programming is utilized to minimize the expected system cost while incorporating yield uncertainty in the strategic level decisions related to biomass production and biorefinery investment.

Author:
Sharma, B. P. , T. E. Yu , B. C. English , C. Boyer , J. A. Larson

Perennial grasses are touted as sustainable feedstocks for energy production. Such benefits, however, may be offset if excessive nitrogen (N) fertilization leads to economic and environmental issues. Furthermore, as yields respond to changes in climate, nutrient requirements will change, and thus guidance on minimal N inputs is necessary to ensure sustainable bioenergy production.

Organization:
DOE
Author:
Huaihai Chen , Zhongmin Dai , Henriette I. Jager , Stan D. Wullschleger , Jianming Xu , Christopher W. Schadt
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Sustainable production of algae will depend on understanding trade-offs at the energy-water nexus. Algal biofuels promise to improve the environmental sustainability profile of renewable energy along most dimensions. In this assessment of potential US freshwater production, we assumed sustainable production along the carbon dimension by simulating placement of open ponds away from high-carbon-stock lands (forest, grassland, and wetland) and near sources of waste CO 2 .

Organization:
DOE
Author:
Henriette I. Jager , Rebecca A. Efroymson , Latha M. Baskaran
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Practicing agriculture decreases downstream water quality when compared to non-agricultural lands. Agricultural watersheds that also grow perennial biofuel feedstocks can be designed to improve water quality compared to agricultural watersheds without perennials. The question then becomes which conservation practices should be employed and where in the landscape should they be situated to achieve water quality objectives when growing biofuel feedstocks.

Organization:
DOE
Author:
Jasmine A.F. Kreig , Herbert Ssegane , Indrajeet Chaubey , Maria C. Negri , Henriette I. Jager
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

New domestic, renewable energy resources must be considered to increase energy security in the U.S. Ethanol production through second-generation (cellulosic) feedstocks will help the U.S. meet the legislative Renewable Fuel Standard, which mandates 36 billion gallons of renewable fuels by 2022. However, conversion of cropland to meet the cellulosic feedstock production goals may have unforeseen environmental consequences.

Author:
David E. Gorelick , Latha M. Baskaran , Henriëtte I. Jager

Logging and mill residues are currently the largest sources of woody biomass for bioenergy in the US, but short-rotation woody crops (SRWCs) are expected to become a larger contributor to biomass production, primarily on lands marginal for food production. However, there are very few studies on the environmental effects of SRWCs, and most have been conducted at stand rather than at watershed scales.

Organization:
DOE
Author:
Natalie A. Griffiths , Benjamin M. Rau , Kellie B. Vache , Gregory Starr , Menberu M. Bitew , Doug P. Aubrey , James A. Martin , Elizabeth Benton , C. Rhett Jackson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.