Skip to main content

KDF Search Results

Displaying 1 - 20 of 78

The goal of this repository is to promote transparency and ease-of-access to the U.S. Department of Energy Bioenergy Technologies Office (BETO) supported public studies involving techno-economic analysis (TEA). As such, this database summarizes the economic and technical parameters associated with the modeled biorefinery processes for the production of biofuels and bioproducts, as presented in a range of published reports and papers.

Organization:
DOE
Author(s):
Christopher Kinchin
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Perennial grasses are touted as sustainable feedstocks for energy production. Such benefits, however, may be offset if excessive nitrogen (N) fertilization leads to economic and environmental issues. Furthermore, as yields respond to changes in climate, nutrient requirements will change, and thus guidance on minimal N inputs is necessary to ensure sustainable bioenergy production.

Organization:
DOE
Author(s):
Huaihai Chen , Zhongmin Dai , Henriette I. Jager , Stan D. Wullschleger , Jianming Xu , Christopher W. Schadt
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Practicing agriculture decreases downstream water quality when compared to non-agricultural lands. Agricultural watersheds that also grow perennial biofuel feedstocks can be designed to improve water quality compared to agricultural watersheds without perennials. The question then becomes which conservation practices should be employed and where in the landscape should they be situated to achieve water quality objectives when growing biofuel feedstocks.

Organization:
DOE
Author(s):
Jasmine A.F. Kreig , Herbert Ssegane , Indrajeet Chaubey , Maria C. Negri , Henriette I. Jager
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Link to the website with documentation and download instructions for the PNNL Global Change Assessment Model (GCAM), a community model or long-term, global energy, agriculture, land use, and emissions. BioEnergy production, transformation, and use is an integral part of GCAM modeling and scenarios.

http://jgcri.github.io/gcam-doc/

Author(s):
Marshall Wise
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Advanced biomass feedstocks tend to provide more non-fuel ecosystem goods and services (ES) than 1st-generation alternatives. We explore the idea that payment for non-fuel ES could facilitate market penetration of advanced biofuels by closing the profitability gap. As a specific example, we discuss the Mississippi-Atchafalaya River Basin (MARB), where 1st-generation bioenergy feedstocks (e.g., corn-grain) have been integrated into the agricultural landscape.

Organization:
DOE
Author(s):
Jager, Henriette I , Efroymson, Rebecca A.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This workshop examines the potential benefits, feasibility, and barriers to the use of biofuels in place of heavy fuel oil (HFO) and marine gas oil for marine vessels. More than 90% of world’s shipped goods
travel by marine cargo vessels powered by internal combustion (diesel) engines using primarily low-cost residual HFO, which is high in sulfur content. Recognizing that marine shipping is the largest source of

Organization:
DOE
Author(s):
Mike Kass , Zia Abdullah , Mary Biddy , Corinne Drennan , Troy Hawkins , Susanne Jones , Johnathan Holladay , Dough Longman , Emily Newes , Tim Theiss , Tom Thompson , Michael Wang
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Reducing dependence on fossil‐based energy has raised interest in biofuels as a potential energy source, but concerns have been raised about potential implications for water quality. These effects may vary regionally depending on the biomass feedstocks and changes in land management. Here, we focused on the Tennessee River Basin (TRB), USA.

Organization:
DOE
Author(s):
Wang, Gangsheng , Jager, Henriette
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Advanced biomass feedstocks tend to provide more non-fuel ecosystem goods and services (ES) than 1st-generation alternatives. We explore the idea that payment for non-fuel ES could facilitate market penetration of advanced biofuels by closing the profitability gap. As a specific example, we discuss the Mississippi-Atchafalaya River Basin (MARB), where 1st-generation bioenergy feedstocks (e.g., corn-grain) have been integrated into the agricultural landscape.

Organization:
DOE
Author(s):
Henriette I.Jager , Rebecca A. Efroymson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Ecological disturbances are occurring with greater frequency and intensity than in the past. Under projected shifts in disturbance regimes and patterns of recovery, societal and environmental impacts are expected to be more extreme and to span larger spatial extents. Moreover, preexisting conditions will require a longer time to re‐establish, if they do so at all. The word “unprecedented” is appearing more often in news reporting on droughts, fires, hurricanes, tsunamis, ice storms, and insect outbreaks.

Organization:
DOE
Author(s):
Virginia H Dale , Henriette I Jager , Amy K Wolfe , Rebecca A Efroymson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Policy makers are interested in estimates of the potential economic impacts of oil price shocks, particularly during periods of rapid and large increases that accompany severe supply shocks. Literature estimates of the economic impacts of oil price shocks, summarized by the oil price elasticity of GDP, span a very wide range due to both fundamental economic and methodological factors. This paper presents a quantitative meta-analysis of the oil price elasticity of GDP for net oil importing countries, with a focus on the United States (US).

Organization:
DOE
Author(s):
Gbadebo A.Oladosu , Paul N.Leiby , David C.Bowman , Rocio Uría-Martínez , Megan M.Johnson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Several crops have recently been identified as potential dedicated bioenergy feedstocks for the production of power, fuels, and bioproducts. Despite being identified as early as the 1980s, no systematic work has been undertaken to characterize the spatial distribution of their long‐term production potentials in the United states.

Organization:
USDA
Author(s):
Christopher Daly , Michael D. Halbleib , David B. Hannaway , Laurence M. Eaton
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

We explore the role of biofuels in mitigating the negative impacts of oil supply shocks on fuel markets under a range of oil price trajectories and biofuel blending mandate levels. Using a partial equilibrium model of US biofuels production and petroleum fuels trade, we discuss the adjustments in light‐duty vehicle fuel mix, fuel prices, and renewable identification number (RIN) prices following each shock as well as the distribution of shock costs across market participants. Ethanol is used as both a complement (blend component in E10) and a substitute (in E15 and E85 blends) to gasoline.

Author(s):
Uría-Martínez, R. , Leiby, P. N. , Brown, M. L.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The ongoing debate about costs and benefits of wood‐pellet based bioenergy production in the southeastern United States (SE USA) requires an understanding of the science and context influencing market decisions associated with its sustainability. Production of pellets has garnered much attention as US exports have grown from negligible amounts in the early 2000s to 4.6 million metric tonnes in 2015. Currently, 98% of these pellet exports are shipped to Europe to displace coal in power plants.

Organization:
DOE
Author(s):
Virginia H. Dale , Keith L. Kline , Esther S. Parish , Annette L. Cowie , Robert Emory , Robert W. Malmsheimer , Raphael Slade , Charles Tattersall (Tat) SMITH Jr
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Wood pellet exports from the Southeastern United States (SE US) to Europe have been increasing in response to European Union member state policies to displace coal with renewable biomass for electricity generation. An understanding of the interactions among SE US forest markets, forest management, and forest ecosystem services is required to quantify the effects of pellet production compared to what would be expected under a reference case or ‘counterfactual scenario’ without pellet production.

Organization:
DOE
Author(s):
Esther S. Parish , Virginia H. Dale , Keith L. Kline , Robert C. Abt
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Published in Bioenergy and Land Use Change (pp. 141–153). John Wiley & Sons, Inc.

Organization:
DOE
Author(s):
Nagendra Singh , Keith L. Kline , Rebecca A. Efroymson , Budhendra Bhaduri , Bridget O'Banion
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This spreadsheet serves as an Input file to the National Renewable Energy Laboratory's Waste-to-Energy System Simulation (WESyS) model developed in Stella Pro (isee systems, Lebanon, NH). WESyS is a national-level system dynamics model that simulates energy production from three sectors of the U.S. waste-to-energy industry: landfills, confined animal feeding operations (CAFOs), and publically owned treatment works (POTWs).

Author(s):
Daniel Inman, Annika Eberle, and Dylan Hettinger of the National Renewable Energy Laboratory; Steven Peterson and Corey Peck of Lexidyne, LLC.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This spreadsheet serves as an Input file to the National Renewable Energy Laboratory's Waste-to-Energy System Simulation (WESyS) model developed in Stella Pro (isee systems, Lebanon, NH). WESyS is a national-level system dynamics model that simulates energy production from three sectors of the U.S. waste-to-energy industry: landfills, confined animal feeding operations (CAFOs), and publically owned treatment works (POTWs).

Author(s):
Daniel Inman, Annika Eberle, and Dylan Hettinger of the National Renewable Energy Laboratory; Steven Peterson and Corey Peck of Lexidyne, LLC.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This spreadsheet serves as an Input file to the National Renewable Energy Laboratory's Waste-to-Energy System Simulation (WESyS) model developed in Stella Pro (isee systems, Lebanon, NH). WESyS is a national-level system dynamics model that simulates energy production from three sectors of the U.S. waste-to-energy industry: landfills, confined animal feeding operations (CAFOs), and publically owned treatment works (POTWs).

Author(s):
Daniel Inman, Annika Eberle, and Dylan Hettinger of the National Renewable Energy Laboratory; Steven Peterson and Corey Peck of Lexidyne, LLC.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This spreadsheet serves as an Input file to the National Renewable Energy Laboratory's Waste-to-Energy System Simulation (WESyS) model developed in Stella Pro (isee systems, Lebanon, NH). WESyS is a national-level system dynamics model that simulates energy production from three sectors of the U.S. waste-to-energy industry: landfills, confined animal feeding operations (CAFOs), and publically owned treatment works (POTWs).

Author(s):
Daniel Inman, Annika Eberle, and Dylan Hettinger of the National Renewable Energy Laboratory; Steven Peterson and Corey Peck of Lexidyne, LLC.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The U.S. Department of Energy’s (DOE’s) Co-Optimization (Co-Optima) initiative is accelerating the introduction of affordable, scalable, and sustainable fuels and high-efficiency, low-emission engines with a first-of-its-kind effort to simultaneously tackle fuel and engine research and development (R&D).

Author(s):
John Farrell , John Holladay , Robert Wagner
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.