Skip to main content

KDF Search Results

Displaying 1 - 10 of 31

Advanced biomass feedstocks tend to provide more non-fuel ecosystem goods and services (ES) than 1st-generation alternatives. We explore the idea that payment for non-fuel ES could facilitate market penetration of advanced biofuels by closing the profitability gap. As a specific example, we discuss the Mississippi-Atchafalaya River Basin (MARB), where 1st-generation bioenergy feedstocks (e.g., corn-grain) have been integrated into the agricultural landscape.

Organization:
DOE
Author:
Jager, Henriette I , Efroymson, Rebecca A.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This dataset was utilized in a report to highlight parameters that affect near-term sustainable supply of corn stover and forest resources at $56 and $74 per dry ton delivered. While the report focus is restricted to 2018, the modeling runs are available from 2016-2022. In the 2016 Billion-ton Report (BT16), two stover cases were presented. In this dataset, we vary technical levels of those assumptions to measure stover supply response and to evaluate the major determinants of stover supply.

Author:
Maggie Davis , Laurence Eaton , Matt Langholtz
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Synthesis manuscript for an Ecology & Society Special Feature on Telecoupling: A New Frontier for Global Sustainability

Author:
Esther Parish, Environmental Sciences Division, Oak Ridge National Laboratory , Anna Herzeberger, Department of Fisheries and Wildlife, Center for Systems Integration and Sustainability, Michigan State University , Colin Phifer, School of Forest Resources and Environmental Science, Michigan Technological University , Virginia Dale, Environmental Sciences Division, Oak Ridge National Laboratory
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The DOE Bioenergy Technologies Office initiated a collaborative research program between Oak Ridge National Laboratory (ORNL), the National Renewable Energy Laboratory (NREL), and Argonne National Laboratory (ANL) to investigate HOF in late 2013. The program objective was to provide a quantitative picture of the barriers to adoption of HOF and the highly efficient vehicles it enables, and to quantify the potential environmental and economic benefits of the technology.

Author:
Tim Theiss , Teresa Alleman , Aaron Brooker , Amgad Elgowainy
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Abstract: Cellulosic-based biofuels are needed to help meet energy needs and to strengthen rural investment and development in the midwestern United States (US). This analysis identifies 11 categories of indicators to measure progress toward sustainability that should be monitored to determine if ecosystem and social services are being maintained, enhanced, or disrupted by production, harvest, storage, and transport of cellulosic feedstock.

Author:
Virginia H. Dale , Keith L. Kline , Tom L. Richard , Doug L. Karlen
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Bioenergy Technologies Office of the U.S. Department of Energy Office of Energy
Efficiency and Renewable Energy sponsored a scoping study to assess the potential of ethanolbased
high octane fuel (HOF) to reduce energy consumption and greenhouse gas emissions.
HOF blends used in an engine designed for higher octane have the potential to increase vehicle
energy efficiency through improved knock suppression. When the high-octane blend is made
with 25%–40% ethanol by volume, this energy efficiency improvement is potentially sufficient

Author:
Kristi Moriarty
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The United States government has been promoting increased use of biofuels, including ethanol from non-food feedstocks, through policies contained in the Energy Independence and Security Act of 2007. The objective is to enhance energy security, reduce greenhouse gas (GHG) emissions, and provide economic benefits. However, the United States has reached the ethanol blend wall, where more ethanol is produced domestically than can be blended into standard gasoline. Nearly all ethanol is blended at 10 volume percent (vol%) in gasoline.

Author:
Caley Johnson , Emily Newes , Aaron Brooker , Robert McCormick , Steve Peterson , Paul Leiby , Rocio Uria Martinez , Gbadebo Oladosu , Maxwell L. Brown
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This project looks at the potential of blending ethanol with natural gasoline to produce Flex-Fuels (ASTM D5798-13a) and high-octane, mid-level ethanol blends. Eight natural gasoline samples were collected from pipeline companies or ethanol producers around the United States.

Author:
Teresa L. Alleman
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The objective of this work was to measure knock resistance metrics for ethanol-hydrocarbon blends with a primary focus on development of methods to  measure the heat of vaporization (HOV). Blends of ethanol at 10 to 50 volume percent were prepared with three gasoline blendstocks and a natural gasoline.

Author:
Gina M. Chupka
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

High-octane fuels (HOFs) such as mid-level ethanol blends can be leveraged to design vehicles with increased engine efficiency, but producing these fuels at refineries may be subject to energy efficiency penalties.  It has been questioned whether, on a well-to-wheels (WTW) basis, the use of HOFs in the vehicles designed for HOF has net greenhouse gas (GHG) emission benefits.

Author:
Jeongwoo Han
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.