Skip to main content

KDF Search Results

Displaying 1 - 10 of 10

Reducing dependence on fossil‐based energy has raised interest in biofuels as a potential energy source, but concerns have been raised about potential implications for water quality. These effects may vary regionally depending on the biomass feedstocks and changes in land management. Here, we focused on the Tennessee River Basin (TRB), USA.

Organization:
DOE
Author:
Wang, Gangsheng , Jager, Henriette
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy is the third in a series of Energy Department national assessments that have calculated the potential supply of biomass in the United States. The report concludes that the United States has the future potential to produce at least one billion dry tons of biomass resources (composed of agricultural, forestry, waste, and algal materials) on an annual basis without adversely affecting the environment.

Author:
Langholtz, M.H. , Eaton, L.M. , Stokes, B.J.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This project looks at the potential of blending ethanol with natural gasoline to produce Flex-Fuels (ASTM D5798-13a) and high-octane, mid-level ethanol blends. Eight natural gasoline samples were collected from pipeline companies or ethanol producers around the United States.

Author:
Teresa L. Alleman
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The objective of this work was to measure knock resistance metrics for ethanol-hydrocarbon blends with a primary focus on development of methods to  measure the heat of vaporization (HOV). Blends of ethanol at 10 to 50 volume percent were prepared with three gasoline blendstocks and a natural gasoline.

Author:
Gina M. Chupka
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

High-octane fuels (HOFs) such as mid-level ethanol blends can be leveraged to design vehicles with increased engine efficiency, but producing these fuels at refineries may be subject to energy efficiency penalties.  It has been questioned whether, on a well-to-wheels (WTW) basis, the use of HOFs in the vehicles designed for HOF has net greenhouse gas (GHG) emission benefits.

Author:
Jeongwoo Han
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The compatibility of elastomeric materials used in fuel storage and dispensing applications was determined for test fuels
representing neat gasoline and gasoline blends containing 10 and 17 vol.% ethanol, and 16 and 24 vol.% isobutanol. The
actual test fuel chemistries were based on the aggressive formulations described in SAE J1681 for oxygenated gasoline.
Elastomer specimens of fluorocarbon, fluorosilicone, acrylonitrile rubber (NBR), polyurethane, neoprene, styrene

Author:
Michael Kass
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The compatibility of plastic materials used in fuel storage and dispensing applications was determined for test fuels representing gasoline blended with 25 vol.% ethanol and gasoline blended with 16 and 24 vol.% isobutanol. Plastic materials included those used in flexible plastic piping and fiberglass resins. Other commonly used plastic materials were also evaluated. The plastic specimens were exposed to Fuel C, CE25a, CiBu16a, and CiBu24a for 16 weeks at 60oC.

Author:
Michael Kass
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This document provides presentation style maps of potential crop yield of dedicated bioenergy crops from the publication "Productivity Potential of Bioenergy Crops from the Sun Grant Regional Feedstock Partnership." 2013. Eaton, Laurence, Chris Daly, Mike Halbleib, Vance Owens, Bryce Stokes. ORNL/TM-2013/574.

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This report, generally referred to as the Billion-Ton Study or 2005 BTS, is an estimate of “potential” biomass available within the contiguous United States based on assumptions about inventory production capacity, availability, and technology.

Author:
Robert D. Perlack
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.