Skip to main content

KDF Search Results

Displaying 1 - 8 of 8

This project looks at the potential of blending ethanol with natural gasoline to produce Flex-Fuels (ASTM D5798-13a) and high-octane, mid-level ethanol blends. Eight natural gasoline samples were collected from pipeline companies or ethanol producers around the United States.

Author:
Teresa L. Alleman
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The objective of this work was to measure knock resistance metrics for ethanol-hydrocarbon blends with a primary focus on development of methods to  measure the heat of vaporization (HOV). Blends of ethanol at 10 to 50 volume percent were prepared with three gasoline blendstocks and a natural gasoline.

Author:
Gina M. Chupka
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

High-octane fuels (HOFs) such as mid-level ethanol blends can be leveraged to design vehicles with increased engine efficiency, but producing these fuels at refineries may be subject to energy efficiency penalties.  It has been questioned whether, on a well-to-wheels (WTW) basis, the use of HOFs in the vehicles designed for HOF has net greenhouse gas (GHG) emission benefits.

Author:
Jeongwoo Han
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Understanding the development of the biofuels industry in the United States is important to policymakers and industry. The Biomass Scenario Model (BSM) is a system dynamics model of the biomass-to-biofuels system that can be used to explore policy effects on biofuels development. Because of the complexity of the model, as well as the wide range of possible future conditions that affect biofuels industry development, we have not developed a single reference case but instead developed a set of specific scenarios that provide various contexts for our analyses.

Author:
Inman, D.; Vimmerstedt, L.; Bush, B.; Peterson, S.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Biomass Scenario Model (BSM) is a system dynamics model that represents the entire biomass-to-biofuels supply chain, from feedstock to fuel use. The BSM is a complex model that has been used for extensive analyses; the model and its results can be better understood if input data used for initialization and calibration are well-characterized. It has been carefully validated and calibrated against the available data, with data gaps filled in using expert opinion and internally consistent assumed values.

Author:
Lin, Y. ; , Newes, E. , Bush, B. , Peterson, S. , Stright, D.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel conversion technology pathways are operating at commercial scales, while others are in earlier stages of development. The advancement of a new pathway toward commercialization involves various types of progress, including yield improvements, process engineering, and financial performance.

Author:
Laura J. Vimmerstedt , Brian W. Bush
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Transitioning to a larger biofuels industry requires a robust biomass-to-biofuels system of systems that operates within existing agriculture, forestry, energy, and transportation markets. Using the existing fuel supply chain infrastructure as a framework, this paper discusses a vision for biomass-based fuels and the challenges associated with a massive market and infrastructure transformation.

Author:
Riley, Cynthia J. , Sandor, Debra
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Biomass Scenario Model Zotero References
National Renewable Energy Laboratory

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.