Skip to main content

KDF Search Results

Displaying 1 - 10 of 13

The objective of this research project was to assess whether standard forestry best management practices (BMPs) are sufficient to protect stream water quality from intensive silviculture associated with short-rotation woody crop (SRWC) production for bioenergy. Forestry BMPs are designed to prevent the movement of deleterious quantities of nutrients, herbicides, sediments, and thermal energy (sunlight hitting stream channels) from clear-cuts and plantations to surface waters.

Organization:
DOE
Author(s):
Natalie A. Griffiths , C. Rhett Jackson , John I. Blake , Johnson Jeffers , Benjamin M. Rau , Gregory Starr , Kellie Vache
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This is a joint report between three national labs, ORNL, INL, and ANL, that describes outcomes from a workshop. The Bioenergy Solutions to Gulf Hypoxia Workshop gathered stakeholders from industry, academia, national laboratories, and U.S. federal agencies to discuss how biomass feedstocks could help decrease nutrient loadings to the Gulf of Mexico (Gulf), a root cause of the large hypoxic zone that forms each summer.

Author(s):
Henriette Jager , Christina Negri , Leslie Ovard , Shyam Nair
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Growing interest in renewable and domestically produced energy motivates the evaluation of woody bioenergy feedstock production. In the southeastern U.S., woody feedstock plantations, primarily of loblolly pine (Pinus taeda), would be intensively managed over short rotations (10-12 years) to achieve high yields.

Author(s):
Natalie A. Griffiths , C. Rhett Jackson , Menberu M. Bitew , Allison M. Fortner , Kevin L. Fouts , Kitty McCracken , Jana R. Phillips
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This dataset reports the pre-treatment hydrology and pre- and post-treatment water quality data from a watershed-scale experiment that is evaluating the effects of growing short-rotation loblolly pine for bioenergy on water quality and quantity in the southeastern U.S. The experiment is taking place on the Savannah River Site, near New Ellenton, South Carolina, USA.  Beginning in 2010, water quality and hydrology were measured for two years in 3 watersheds (R, B, C).

Author(s):
Natalie A. Griffiths , C. Rhett Jackson , Jeffrey J. McDonnell , Julian Klaus , Enhao Du , Menberu M. Bitew , Allison M. Fortner , Kevin L. Fouts , Kitty McCracken , Jana R. Phillips
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

One approach to assessing progress towards sustainability makes use of multiple indicators spanning the
environmental, social, and economic dimensions of the system being studied. Diverse indicators have different
units of measurement, and normalization is the procedure employed to transform differing indicator
measures onto similar scales or to unit-free measures. Given the inherent complexity entailed in interpreting
information related to multiple indicators, normalization and aggregation of sustainability indicators

Author(s):
N.L. Pollesch , V.H. Dale
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Nitrogen (N) is an important nutrient as it often limits productivity, but in excess can impair water quality. Most studies on watershed N cycling have occurred in upland forested catchments where snowmelt dominates N export; fewer studies have focused on low-relief watersheds that lack snow. We examined watershed N cycling in three adjacent, low-relief watersheds in the Upper Coastal Plain of the southeastern United States to better understand the role of hydrological flowpaths and biological transformations of N at the watershed scale.

Author(s):
Natalie A. Griffiths , C. Rhett Jackson , Jeffrey J. McDonnell , Julian Klaus , Enhao Du , Menberu M. Bitew
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Social and economic indicators can be used to support design of sustainable energy systems. Indicators representing categories of social well-being, energy security, external trade, profitability, resource conservation, and social acceptability have not yet been measured in published sustainability assessments for commercial algal biofuel facilities.

Organization:
DOE
Author(s):
Rebecca A. Efroymson , Virginia H. Dale , Matthew H. Langholtz
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

There is an inextricable link between energy production and food/feed/fiber cultivation with available water resources. Currently in the United States, agriculture represents the largest sector of consumptivewater usemaking up 80.7%of the total. Electricity generation in the U.S. is projected to increase by 24 % in the next two decades and globally, the production of liquid transportation fuels are forecasted to triple over the next 25-years, having significant impacts on the import/export market and global economies.

Author(s):
Brandon C. Moore
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The compatibility of plastic materials used in fuel storage and dispensing applications was determined for an off-highway diesel fuel
and a blend containing 20% bio-oil (Bio20) derived from a fast pyrolysis process. Bio20 is not to be confused with B20, which is a
diesel blend containing 20% biodiesel. The feedstock, processing, and chemistry of biodiesel are markedly different from bio-oil.
Plastic materials included those identified for use as seals, coatings, piping and fiberglass resins, but many are also used in vehicle

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The compatibility of elastomer materials used in fuel storage and dispensing applications was determined for an off-highway diesel
fuel and a blend containing 20% bio-oil (Bio20) derived from a fast pyrolysis process. (This fuel blend is not to be confused with B20,
which is a blend of diesel fuel with 20% biodiesel.) The elastomer types evaluated in this study included fluorocarbon, fluorosilicone,
acrylonitrile rubber (NBR), styrene butadiene rubber (SBR), polyurethane, neoprene, and silicone. All of these elastomer types are

Author(s):
Michael Kass
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.