Skip to main content

KDF Search Results

Displaying 1 - 10 of 68

Synthesis manuscript for an Ecology & Society Special Feature on Telecoupling: A New Frontier for Global Sustainability

Author(s):
Esther Parish, Environmental Sciences Division, Oak Ridge National Laboratory , Anna Herzeberger, Department of Fisheries and Wildlife, Center for Systems Integration and Sustainability, Michigan State University , Colin Phifer, School of Forest Resources and Environmental Science, Michigan Technological University , Virginia Dale, Environmental Sciences Division, Oak Ridge National Laboratory
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Simulated Response of Avian Biodiversity to Biomass Production. 2017. Chapter 10 in R.A. Efroymson et al. eds., 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1. ORNL/TM-2016/727. Oak Ridge National Laboratory, Oak Ridge, TN, pp.140-182. DOI: 10.2172/1338837, https://energy.gov/eere/bioenergy/downloads/2016-billion-ton-report-vol…

Author(s):
Henriette I. Jager , Gangsheng Wang , Jasmine Kreig , Nathan Sutton , Ingrid Busch
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Jager, H. I., M. Wu, M. Ha, L. Baskaran and J. Krieg. 2017. Water Quality Responses to Simulated Management Practices on Agricultural Lands Producing Biomass Feedstocks in Two Tributary Basins of the Mississippi River, in R.A. Efroymson et al. eds., 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1. ORNL/TM-2016/727. Oak Ridge National Laboratory, Oak Ridge, TN, pp.140-182.

Author(s):
Henriette I. Jager
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This spreadsheet serves as an Input file to the National Renewable Energy Laboratory's Waste-to-Energy System Simulation (WESyS) model developed in Stella Pro (isee systems, Lebanon, NH). WESyS is a national-level system dynamics model that simulates energy production from three sectors of the U.S. waste-to-energy industry: landfills, confined animal feeding operations (CAFOs), and publically owned treatment works (POTWs).

Author(s):
Daniel Inman, Annika Eberle, and Dylan Hettinger of the National Renewable Energy Laboratory; Steven Peterson and Corey Peck of Lexidyne, LLC.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This spreadsheet serves as an Input file to the National Renewable Energy Laboratory's Waste-to-Energy System Simulation (WESyS) model developed in Stella Pro (isee systems, Lebanon, NH). WESyS is a national-level system dynamics model that simulates energy production from three sectors of the U.S. waste-to-energy industry: landfills, confined animal feeding operations (CAFOs), and publically owned treatment works (POTWs).

Author(s):
Daniel Inman, Annika Eberle, and Dylan Hettinger of the National Renewable Energy Laboratory; Steven Peterson and Corey Peck of Lexidyne, LLC.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.