Skip to main content

KDF Search Results

Displaying 1 - 10 of 26

Reducing dependence on fossil‐based energy has raised interest in biofuels as a potential energy source, but concerns have been raised about potential implications for water quality. These effects may vary regionally depending on the biomass feedstocks and changes in land management. Here, we focused on the Tennessee River Basin (TRB), USA.

Organization:
DOE
Author:
Wang, Gangsheng , Jager, Henriette
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The DOE Bioenergy Technologies Office initiated a collaborative research program between Oak Ridge National Laboratory (ORNL), the National Renewable Energy Laboratory (NREL), and Argonne National Laboratory (ANL) to investigate HOF in late 2013. The program objective was to provide a quantitative picture of the barriers to adoption of HOF and the highly efficient vehicles it enables, and to quantify the potential environmental and economic benefits of the technology.

Author:
Tim Theiss , Teresa Alleman , Aaron Brooker , Amgad Elgowainy
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Bioenergy Technologies Office of the U.S. Department of Energy Office of Energy
Efficiency and Renewable Energy sponsored a scoping study to assess the potential of ethanolbased
high octane fuel (HOF) to reduce energy consumption and greenhouse gas emissions.
HOF blends used in an engine designed for higher octane have the potential to increase vehicle
energy efficiency through improved knock suppression. When the high-octane blend is made
with 25%–40% ethanol by volume, this energy efficiency improvement is potentially sufficient

Author:
Kristi Moriarty
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The United States government has been promoting increased use of biofuels, including ethanol from non-food feedstocks, through policies contained in the Energy Independence and Security Act of 2007. The objective is to enhance energy security, reduce greenhouse gas (GHG) emissions, and provide economic benefits. However, the United States has reached the ethanol blend wall, where more ethanol is produced domestically than can be blended into standard gasoline. Nearly all ethanol is blended at 10 volume percent (vol%) in gasoline.

Author:
Caley Johnson , Emily Newes , Aaron Brooker , Robert McCormick , Steve Peterson , Paul Leiby , Rocio Uria Martinez , Gbadebo Oladosu , Maxwell L. Brown
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This project looks at the potential of blending ethanol with natural gasoline to produce Flex-Fuels (ASTM D5798-13a) and high-octane, mid-level ethanol blends. Eight natural gasoline samples were collected from pipeline companies or ethanol producers around the United States.

Author:
Teresa L. Alleman
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The objective of this work was to measure knock resistance metrics for ethanol-hydrocarbon blends with a primary focus on development of methods to  measure the heat of vaporization (HOV). Blends of ethanol at 10 to 50 volume percent were prepared with three gasoline blendstocks and a natural gasoline.

Author:
Gina M. Chupka
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

High-octane fuels (HOFs) such as mid-level ethanol blends can be leveraged to design vehicles with increased engine efficiency, but producing these fuels at refineries may be subject to energy efficiency penalties.  It has been questioned whether, on a well-to-wheels (WTW) basis, the use of HOFs in the vehicles designed for HOF has net greenhouse gas (GHG) emission benefits.

Author:
Jeongwoo Han
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The compatibility of plastic materials used in fuel storage and dispensing applications was determined for an off-highway diesel fuel
and a blend containing 20% bio-oil (Bio20) derived from a fast pyrolysis process. Bio20 is not to be confused with B20, which is a
diesel blend containing 20% biodiesel. The feedstock, processing, and chemistry of biodiesel are markedly different from bio-oil.
Plastic materials included those identified for use as seals, coatings, piping and fiberglass resins, but many are also used in vehicle

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The compatibility of plastic materials used in fuel storage and dispensing applications was determined for a test fuel representing
gasoline blended with 10% ethanol. Prior investigations were performed on gasoline fuels containing 25, 50 and 85% ethanol, but the
knowledge gap existing from 0 to 25% ethanol precluded accurate compatibility assessment of low level blends, especially for the
current E10 fuel (gasoline containing 10% ethanol) used in most filling stations, and the recently accepted E15 fuel blend (gasoline
blended with up to15% ethanol).

Author:
Michael Kass
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The compatibility of elastomer materials used in fuel storage and dispensing applications was determined for an off-highway diesel
fuel and a blend containing 20% bio-oil (Bio20) derived from a fast pyrolysis process. (This fuel blend is not to be confused with B20,
which is a blend of diesel fuel with 20% biodiesel.) The elastomer types evaluated in this study included fluorocarbon, fluorosilicone,
acrylonitrile rubber (NBR), styrene butadiene rubber (SBR), polyurethane, neoprene, and silicone. All of these elastomer types are

Author:
Michael Kass
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.