Skip to main content

KDF Search Results

Displaying 1 - 10 of 36

Advanced biomass feedstocks tend to provide more non-fuel ecosystem goods and services (ES) than 1st-generation alternatives. We explore the idea that payment for non-fuel ES could facilitate market penetration of advanced biofuels by closing the profitability gap. As a specific example, we discuss the Mississippi-Atchafalaya River Basin (MARB), where 1st-generation bioenergy feedstocks (e.g., corn-grain) have been integrated into the agricultural landscape.

Organization:
DOE
Author(s):
Jager, Henriette I , Efroymson, Rebecca A.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Synthesis manuscript for an Ecology & Society Special Feature on Telecoupling: A New Frontier for Global Sustainability

Author(s):
Esther Parish, Environmental Sciences Division, Oak Ridge National Laboratory , Anna Herzeberger, Department of Fisheries and Wildlife, Center for Systems Integration and Sustainability, Michigan State University , Colin Phifer, School of Forest Resources and Environmental Science, Michigan Technological University , Virginia Dale, Environmental Sciences Division, Oak Ridge National Laboratory
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy is the third in a series of Energy Department national assessments that have calculated the potential supply of biomass in the United States. The report concludes that the United States has the future potential to produce at least one billion dry tons of biomass resources (composed of agricultural, forestry, waste, and algal materials) on an annual basis without adversely affecting the environment.

Author(s):
Langholtz, M.H. , Eaton, L.M. , Stokes, B.J.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Abstract: Cellulosic-based biofuels are needed to help meet energy needs and to strengthen rural investment and development in the midwestern United States (US). This analysis identifies 11 categories of indicators to measure progress toward sustainability that should be monitored to determine if ecosystem and social services are being maintained, enhanced, or disrupted by production, harvest, storage, and transport of cellulosic feedstock.

Author(s):
Virginia H. Dale , Keith L. Kline , Tom L. Richard , Doug L. Karlen
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.