Skip to main content

KDF Search Results

Displaying 21 - 40 of 704

This data article focuses on sustainability indicators for bioenergy generation from Brazilian Amazon׳s non-woody native biomass sources, considered to be modern forms of biomass. In the construction of the indicators, the Indicator-based Framework for Evaluation of Natural Resource Management Systems (MESMIS, from the original Spanish) method was used, with the application of the seven sustainability attributes to identify critical points and limiting and favorable factors for sustainability.

Author(s):
Josmar Almeida Flores , Odorico Konrad , Cíntia Rosina Flores , Nádia Teresinha Schroder

This is a joint report between three national labs, ORNL, INL, and ANL, that describes outcomes from a workshop. The Bioenergy Solutions to Gulf Hypoxia Workshop gathered stakeholders from industry, academia, national laboratories, and U.S. federal agencies to discuss how biomass feedstocks could help decrease nutrient loadings to the Gulf of Mexico (Gulf), a root cause of the large hypoxic zone that forms each summer.

Author(s):
Henriette Jager , Christina Negri , Leslie Ovard , Shyam Nair
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Reducing dependence on fossil‐based energy has raised interest in biofuels as a potential energy source, but concerns have been raised about potential implications for water quality. These effects may vary regionally depending on the biomass feedstocks and changes in land management. Here, we focused on the Tennessee River Basin (TRB), USA.

Organization:
DOE
Author(s):
Wang, Gangsheng , Jager, Henriette
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Highlights
• Opportunities to improve coproduction of wildlife and biomass-for-energy exist at multiple spatial scales.

• At the landscape scale, we review strategies for increasing biodiversity in biomass production systems, drawing examples from plantations, dedicated perennial grasses, and forest thinning systems in the Americas.

• At the scale of one land owner, we describe wildlife-friendly practices to promote land sharing for each production system.

Organization:
DOE
Author(s):
Jager, Henriette I , Kreig, Jasmine
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The biobased economy is playing an increasingly important role in the American economy.

Through innovations in renewable energies and the emergence of a new generation of biobased products, the sectors that drive the biobased economy are providing job creation and economic growth. To further understand and analyze trends in the biobased economy, this report compares 2011 and 2016 report data.

Organization:
USDA
Author(s):
Jay S. Golden , Robert Handfield , Janire Pascual-Gonzalez , Ben Agsten , Taylor Brennan , Lina Khan , Emily True

Join the U.S. Department of Energy’s Bioenergy Technologies Office on Dec. 6, 2018, at 1 p.m. CST for a webinar on “Biomass Production and Water Quality in the Mississippi River Basin.” In this webinar, Argonne National Laboratory and Oak Ridge National Laboratory will jointly present modeling and analyses of potential implications of biomass production on nutrients and sediments in each of the six tributaries of the Mississippi River Basin.

Organization:
DOE
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Advanced biomass feedstocks tend to provide more non-fuel ecosystem goods and services (ES) than 1st-generation alternatives. We explore the idea that payment for non-fuel ES could facilitate market penetration of advanced biofuels by closing the profitability gap. As a specific example, we discuss the Mississippi-Atchafalaya River Basin (MARB), where 1st-generation bioenergy feedstocks (e.g., corn-grain) have been integrated into the agricultural landscape.

Organization:
DOE
Author(s):
Henriette I.Jager , Rebecca A. Efroymson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Ecological disturbances are occurring with greater frequency and intensity than in the past. Under projected shifts in disturbance regimes and patterns of recovery, societal and environmental impacts are expected to be more extreme and to span larger spatial extents. Moreover, preexisting conditions will require a longer time to re‐establish, if they do so at all. The word “unprecedented” is appearing more often in news reporting on droughts, fires, hurricanes, tsunamis, ice storms, and insect outbreaks.

Organization:
DOE
Author(s):
Virginia H Dale , Henriette I Jager , Amy K Wolfe , Rebecca A Efroymson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Policy makers are interested in estimates of the potential economic impacts of oil price shocks, particularly during periods of rapid and large increases that accompany severe supply shocks. Literature estimates of the economic impacts of oil price shocks, summarized by the oil price elasticity of GDP, span a very wide range due to both fundamental economic and methodological factors. This paper presents a quantitative meta-analysis of the oil price elasticity of GDP for net oil importing countries, with a focus on the United States (US).

Organization:
DOE
Author(s):
Gbadebo A.Oladosu , Paul N.Leiby , David C.Bowman , Rocio Uría-Martínez , Megan M.Johnson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with 18 plastic types was evaluated using neat diesel fuel as the baseline.

Organization:
DOE
Author(s):
Michael D. Kass , Christopher J. Janke , Raynella M. Connatser , Samuel A. Lewis Sr. , James R. Keiser , Katherine Gaston
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Several crops have recently been identified as potential dedicated bioenergy feedstocks for the production of power, fuels, and bioproducts. Despite being identified as early as the 1980s, no systematic work has been undertaken to characterize the spatial distribution of their long‐term production potentials in the United states.

Organization:
USDA
Author(s):
Christopher Daly , Michael D. Halbleib , David B. Hannaway , Laurence M. Eaton
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Energy market conditions have shifted dramatically since the USA renewable fuel standards (RFS1 in 2005; RFS2 in 2007) were enacted. The USA has transitioned from an increasing dependence on oil imports to abundant domestic oil production. In addition, increases in the use of ethanol, the main biofuel currently produced in the USA, is now limited by the blend wall constraint. Given this, the current study evaluates alternative biofuel deployment scenarios in the USA, accounting for changes in market conditions.

Author(s):
Gbadebo Oladosu
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This analysis estimates the cost of selected oil and biomass supply shocks for producers and consumers in the light-duty vehicle fuel market under various supply chain configurations using a mathematical programing model, BioTrans. The supply chain configurations differ by whether they include selected flexibility levers: multi-feedstock biorefineries; advanced biomass logistics; and the ability to adjust ethanol content of low-ethanol fuel blends, from E10 to E15 or E05.

Author(s):
Rocío Uría-Martínez , Paul N. Leiby , Maxwell L. Brown
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

We explore the role of biofuels in mitigating the negative impacts of oil supply shocks on fuel markets under a range of oil price trajectories and biofuel blending mandate levels. Using a partial equilibrium model of US biofuels production and petroleum fuels trade, we discuss the adjustments in light‐duty vehicle fuel mix, fuel prices, and renewable identification number (RIN) prices following each shock as well as the distribution of shock costs across market participants. Ethanol is used as both a complement (blend component in E10) and a substitute (in E15 and E85 blends) to gasoline.

Author(s):
Uría-Martínez, R. , Leiby, P. N. , Brown, M. L.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Price Scenarios at $54 and $119 were simulated for Switchgrass, Miscanthus and Willow production from 2017 to 2040. These analyses were used in Woodbury, Peter B., et al. 2018. "Improving water quality in the Chesapeake Bay using payments for ecosystem services for perennial biomass for bioenergy and biofuel production." Biomass and Bioenergy 114:132-142. doi: https://doi.org/10.1016/j.biombioe.2017.01.024.

Organization:
USDA
Author(s):
Maggie R. Davis

This dataset was utilized in a report to highlight parameters that affect near-term sustainable supply of corn stover and forest resources at $56 and $74 per dry ton delivered. While the report focus is restricted to 2018, the modeling runs are available from 2016-2022. In the 2016 Billion-ton Report (BT16), two stover cases were presented. In this dataset, we vary technical levels of those assumptions to measure stover supply response and to evaluate the major determinants of stover supply.

Author(s):
Maggie Davis , Laurence Eaton , Matt Langholtz
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Synthesis manuscript for an Ecology & Society Special Feature on Telecoupling: A New Frontier for Global Sustainability

Author(s):
Esther Parish, Environmental Sciences Division, Oak Ridge National Laboratory , Anna Herzeberger, Department of Fisheries and Wildlife, Center for Systems Integration and Sustainability, Michigan State University , Colin Phifer, School of Forest Resources and Environmental Science, Michigan Technological University , Virginia Dale, Environmental Sciences Division, Oak Ridge National Laboratory
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The ongoing debate about costs and benefits of wood‐pellet based bioenergy production in the southeastern United States (SE USA) requires an understanding of the science and context influencing market decisions associated with its sustainability. Production of pellets has garnered much attention as US exports have grown from negligible amounts in the early 2000s to 4.6 million metric tonnes in 2015. Currently, 98% of these pellet exports are shipped to Europe to displace coal in power plants.

Organization:
DOE
Author(s):
Virginia H. Dale , Keith L. Kline , Esther S. Parish , Annette L. Cowie , Robert Emory , Robert W. Malmsheimer , Raphael Slade , Charles Tattersall (Tat) SMITH Jr
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Wood pellet exports from the Southeastern United States (SE US) to Europe have been increasing in response to European Union member state policies to displace coal with renewable biomass for electricity generation. An understanding of the interactions among SE US forest markets, forest management, and forest ecosystem services is required to quantify the effects of pellet production compared to what would be expected under a reference case or ‘counterfactual scenario’ without pellet production.

Organization:
DOE
Author(s):
Esther S. Parish , Virginia H. Dale , Keith L. Kline , Robert C. Abt
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

In order to understand the climate effects of a bioenergy system, a comparison between the bioenergy system and a reference system is required. The reference system describes the situation that occurs in the absence of the bioenergy system with respect to the use of land, energy, and materials. The importance of reference systems is discussed in the literature but guidance on choosing suitable reference systems for assessing climate effects of bioenergy is limited. The reference system should align with the purpose of the study.

Author(s):
Koponen K , Soimakallio S , Kline KL , Cowie A , Brandão M