Skip to main content

KDF Search Results

Displaying 121 - 140 of 704

INTRODUCTION The U.S. Congress passed the Renewable Fuels Standard (RFS) seven years ago. Since then, biofuels have gone from darling to scapegoat for many environmentalists, policy makers, and the general public. The reasons for this shift are complex and include concerns about environmental degradation, uncertainties about impact on food security, new access to fossil fuels, and overly optimistic timetables. As a result, many people have written off biofuels.

Author(s):
Bruce E. Dale , James E. Anderson , Robert C. Brown , Steven Csonka , Virginia H. Dale , Gary Herwick , Randall D. Jackson , Nicholas Jordan , Stephen Kaffka , Keith L. Kline
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Background: The purpose of the article is to research and analyze the notion of sustainability criteria in their function of an emerging tool to promote and safeguard sustainable products and their sustainable production. The article addresses critical issues, which are important for deeper understanding of sustainability criteria and their practical use.

Author(s):
Evgenia Pavlovskaia

Corn cobs were once viewed as an important biofuel feedstock early in U.S. history to heat houses, farm buildings, and small businesses. However, with the advent of combines, which left the cob in the field, the use of corn cobs as a biofuel declined dramatically. Corn cobs are used on a limited basis for industrial purposes in the United States for bedding, oil sorbents, polishing agents, and other uses.

Author(s):
Greg Roth , Cole Gustafson

Removal of corn (Zea mays L.) stover as a biofuel feedstock is being considered. It is important to understand the implications of this practice when establishing removal guidelines to ensure the long-term sustainability of both the biofuel industry and soil health. Aboveground and belowground plant residues are the soil’s main sources of organic materials that bind soil particles together into aggregates and increase soil carbon (C) storage.

Author(s):
Shannon L. Osborne , Jane M. F. Johnson , Virginia L. Jin , Amber L. Hammerbeck , Gary E. Varvel , Tom E. Schumacher

Quantifying lignin and carbohydrate composition of corn (Zea mays L.) is important to support the emerging cellulosic biofuels industry. Therefore, field studies with 0 or 100 % stover removal were established in Alabama and South Carolina as part of the Sun Grant Regional Partnership Corn Stover Project. In Alabama, cereal rye (Secale cereale L.) was also included as an additional experimental factor, serving as a winter cover crop.

Author(s):
Spyridon Mourtzinis , Keri B. Cantrell , Francisco J. Arriaga , Kipling S. Balkcom , Jeff M. Novak , James R. Frederick , Douglas L. Karlen

Harvesting of corn stover (plant residues) for cellulosic ethanol production must be balanced with the requirement for returning plant residues to agricultural fields to maintain soil structure, fertility, crop protection, and other ecosystem services. High rates of corn stover removal can be associated with decreased soil organic matter (SOM) quantity and quality and increased highly erodible soil aggregate fractions.

Author(s):
R. Michael Lehman , Thomas F. Ducey , Virginia L. Jin , Veronica Acosta-Martinez , Carla M. Ahlschwede , Elizabeth S. Jeske , Rhae A. Drijber , Keri B. Cantrell , James R. Frederick , Darci M. Fink , Shannon L. Osborne , Jeff M. Novak , Jane M. F. Johnson , Gary E. Varvel

Corn (Zea mays L.) stover was identified as an important feedstock for cellulosic bioenergy production because of the extensive area upon which the crop is already grown. This report summarizes 239 site-years of field research examining effects of zero, moderate, and high stover removal rates at 36 sites in seven different states.

Author(s):
Douglas L. Karlen , Stuart J. Birell , Jane M. F. Johnson , Shannon L. Osborne , Thomas E. Schumacher , Gary E. Varvel , Richard B. Ferguson , Jeff M. Novak , James R. Fredrick , John M. Baker , John A. Lamb , Paul R. Adler , Greg W. Roth , Emerson D. Nafziger

Corn’s (Zea mays L.) stover is a potential nonfood, herbaceous bioenergy feedstock. A vital aspect of utilizing stover for bioenergy production is to establish sustainable harvest criteria that avoid exacerbating soil erosion or degrading soil organic carbon (SOC) levels. Our goal is to empirically estimate the minimum residue return rate required to sustain SOC levels at numerous locations and to identify which macroscale factors affect empirical estimates.

Author(s):
Jane M. F. Johnson , Jeffrey M. Novak , Gary E. Varvel , Diane E. Stott , Shannon L. Osborne , Douglas L. Karlen , John A. Lamb , John Baker , Paul R. Adler

In-field measurements of direct soil greenhouse gas (GHG) emissions provide critical data for quantifying the net energy efficiency and economic feasibility of crop residue-based bioenergy production systems. A major challenge to such assessments has been the paucity of field studies addressing the effects of crop residue removal and associated best practices for soil management (i.e., conservation tillage) on soil emissions of carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4).

Author(s):
Virginia L. Jin , John M. Baker , Jane M.-F. Johnson , Douglas L. Karlen , R. Michael Lehman , Shannon L. Osborne , Thomas J. Sauer , Diane E. Stott , Gary E. Varvel , Rodney T. Venterea , Marty R. Schmer , Brian J. Wienhold

Economic, environmental, and energy independence issues are contributing to rising fossil fuel prices, petroleum supply concerns, and a growing interest in biomass feedstocks as renewable energy sources. Potential feedstocks include perennial grasses, timber, and annual grain crops with our focus being on corn (Zea mays L.) stover. A plot-scale study evaluating stover removal was initiated in 2008 on a South Carolina Coastal Plain Coxville/Rains–Goldsboro–Lynchburg soil association site.

Author(s):
Keri B. Cantrell , Jeffrey M. Novak , James R. Frederick , Douglas L. Karlen , Donald W. Watts

Harvesting crop residue needs to be managed to protect agroecosystem health and productivity. DAYCENT, a process-based modeling tool, may be suited to accommodate region-specific factors and provide regional predictions for a broad array of agroecosystem impacts associated with corn stover harvest. Grain yield, soil C, and N2O emission data collected at Corn Stover Regional Partnership experimental sites were used to test DAYCENT performance modeling the impacts of corn stover removal.

Author(s):
Eleanor E. Campbell , Jane M. F. Johnson , Virginia L. Jin , R. Michael Lehman , Shannon L. Osborne , Gary E. Varvel , Keith Paustian

To prepare for a 2014 launch of commercial scale cellulosic ethanol production from corn/maize (Zea mays L.) stover, POET-DSM near Emmetsburg, IA has been working with farmers, researchers, and equipment dealers through “Project Liberty” on harvest, transportation, and storage logistics of corn stover for the past several years. Our objective was to evaluate seven stover harvest strategies within a 50-ha (125 acres) site on very deep, moderately well to poorly drained Mollisols, developed in calcareous glacial till.

Author(s):
Stuart J. Birrell , Douglas L. Karlen , Adam Wirt

Harvesting crop residues for bioenergy or bio-product production may decrease soil organic matter (SOM) content, resulting in the degradation of soil physical properties and ultimately soil productivity. Using the least limiting water range (LLWR) to evaluate improvement or degradation of soil physical properties in response to SOM changes has generally been hampered by the extensive amount of data needed to parameterize limiting factor models for crop production.

Author(s):
Joseph G. Benjamin , Douglas L. Karlen

Corn stover removal, whether for silage, bedding, or bioenergy production, could have a variety of environmental consequences through its effect on soil processes, particularly N2O production and soil respiration. Because these effects may be episodic in nature, weekly snapshots with static chambers may not provide a complete picture.

Author(s):
John M. Baker , Joel Fassbinder , John A. Lamb

Rigorous economic analyses are crucial for the successful launch of lignocellulosic bioenergy facilities in 2014 and beyond. Our objectives are to (1) introduce readers to a query tool developed to use data downloaded from the Agricultural Research Service (ARS) REAPnet for constructing enterprise budgets and (2) demonstrate the use of the query tool with REAPnet data from two field research sites (Ames, IA, and Mandan, ND) for evaluating short-term economic performance of various biofuel feedstock production strategies.

Author(s):
David W. Archer , Douglas L. Karlen , Mark A. Liebig

Potential global biodiversity impacts from near-term gasoline production are compared to
biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term
(i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more
than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in
remote, fragile terrestrial ecosystems or off-shore oil fi elds that would remain relatively undisturbed

Author(s):
Dale VH , Parish ES , Kline KL

The following reports, papers, and websites relate to Intermediate Ethanol Blend Studies supported or partially supported by the Department of Energy since 2007; also listed are relevant industry-funded materials studies and relevant EPA and Coordinating Research Council websites. Numerous oral presentations were given throughout the program; these are not listed, however those given at DOE Annual Merit Reviews are included here.

Water consumption and water quality continue to be key factors affecting environmental sustainability in biofuel production. This review covers the findings from biofuel water analyses published over the past 2 years to underscore the progress made, and to highlight advancements in understanding the interactions among increased production and water demand, water resource availability, and potential changes in water quality. We focus on two key areas: water footprint assessment and watershed modeling.

Organization:
DOE
Author(s):
May Wu , Zhonglong Zhang , Yiwen Chiu
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This project looks at the potential of blending ethanol with natural gasoline to produce Flex-Fuels (ASTM D5798-13a) and high-octane, mid-level ethanol blends. Eight natural gasoline samples were collected from pipeline companies or ethanol producers around the United States.

Author(s):
Teresa L. Alleman
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The objective of this work was to measure knock resistance metrics for ethanol-hydrocarbon blends with a primary focus on development of methods to  measure the heat of vaporization (HOV). Blends of ethanol at 10 to 50 volume percent were prepared with three gasoline blendstocks and a natural gasoline.

Author(s):
Gina M. Chupka
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.