Skip to main content

KDF Search Results

Displaying 1 - 10 of 10

Conventional feedstock supply systems exist and have been developed for traditional agriculture and forestry systems. These conventional feedstock supply systems can be effective in high biomass-yielding areas (such as for corn stover in Iowa and plantation-grown pine trees in the southern United States), but they have their limits, particularly with respect to addressing feedstock quality and reducing feedstock supply risk to biorefineries. They also are limited in their ability to efficiently deliver energy crops.

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The U.S. Department of Energy Biomass Program sponsored the Land-Use Change and Bioenergy workshop in Vonore, Tennessee, from May 11 to May 14, 2009. More than 50 experts from around the world gathered to review the state of the science, identify opportunities for collaboration, and prioritize next steps for the research and data needed to address key issues regarding the land-use effects of bioenergy policies. A key outcome of the workshop was the identification of research areas that may improve our understanding of land-use change in a bioenergy context.

Author(s):
Keith L. Kline

T. Searchinger et al. propose "Fixing a critical climate accounting error" (Policy Forum, 23 October 2009, p. 527). We agree that greenhouse gas (GHG) emission accounting needs to be more comprehensive, but believe that Searchinger's proposal would make matters worse by increasing the complexity and uncertainty of calculations. Solutions must be practical and verifiable to be effective.

Author(s):
Keith L. Kline

Bioenergy has been recognized as an important source of energy that will reduce nation’s dependency on petroleum, and have a positive impact on the economy, environment, and society. Production of bioenergy is expected to increase. As a result, we foresee an increase in the number of biorefineries in the near future. This paper analyzes logistical challenges with supplying biomass to a biorefinery.

EXECUTIVE SUMMARY: Life cycle assessment (LCA) is a powerful tool that may be used to quantify the environmental impacts of products and services. It includes all processes, from cradle-to-grave, along the supply chain of the product. When analysing energy systems, greenhouse gas (GHG) emissions (primarily CO2, CH4 and N2O) are the impact of primary concern. In using LCA to determine the climate change mitigation benefits of bioenergy, the life cycle emissions of the bioenergy system are compared with the emissions for a reference energy system.

This paper examines the impact of biofuel expansion on grain utilization and distribution at the state and cropping district level as most of grain producers and handlers are directly influenced by the local changes. We conducted a survey to understand the utilization and flows of corn, ethanol and its co-products, such as dried distillers grains (DDG) in Iowa. Results suggest that the rapidly expanding ethanol industry has a significant impact on corn utilization in Iowa.

Author(s):
Yu, Tun-Hsiang (Edward)

Agricultural markets often feature significant transport costs and spatially distributed production and processing which causes spatial imperfect competition. Spatial economics considers the firms’ decisions regarding location and spatial price strategy separately, usually on the demand side, and under restrictive assumptions. Therefore, alternative approaches are needed to explain, e.g., the location of new ethanol plants in the U.S. at peripheral as well as at central locations and the observation of different spatial price strategies in the market.

Author(s):
Graubner, Marten

The National Renewable Energy Laboratory (NREL) originally developed this application for biopower with funding from the Environmental Protection Agency's Blue Skyways Collaborative. The Department of Energy's Office of Biomass Program provided funding for biofuels functionality. More information on funding agencies is available: http://www.blueskyways.org and http://www.eere.energy.gov/biomass/.

Supply chain management involves all of the activities in industrial organizations from raw material procurement to final product delivery to customers. The main aim in supply chain management is to satisfy production requirements, while optimizing the economic objectives. In traditional fossil fuel supply chains, huge amounts of fossil fuels are transported via pipelines or tankers with very small costs. These fuels can be transformed into other sources of energy or transportation fuels at their destination points.

Author(s):
Ahu Soylu