Skip to main content

KDF Search Results

Displaying 1 - 20 of 64

Synthesis manuscript for an Ecology & Society Special Feature on Telecoupling: A New Frontier for Global Sustainability

Author(s):
Esther Parish, Environmental Sciences Division, Oak Ridge National Laboratory , Anna Herzeberger, Department of Fisheries and Wildlife, Center for Systems Integration and Sustainability, Michigan State University , Colin Phifer, School of Forest Resources and Environmental Science, Michigan Technological University , Virginia Dale, Environmental Sciences Division, Oak Ridge National Laboratory
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The compatibility of elastomeric materials used in fuel storage and dispensing applications was determined for test fuels
representing neat gasoline and gasoline blends containing 10 and 17 vol.% ethanol, and 16 and 24 vol.% isobutanol. The
actual test fuel chemistries were based on the aggressive formulations described in SAE J1681 for oxygenated gasoline.
Elastomer specimens of fluorocarbon, fluorosilicone, acrylonitrile rubber (NBR), polyurethane, neoprene, styrene

Author(s):
Michael Kass
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The compatibility of plastic materials used in fuel storage and dispensing applications was determined for test fuels representing gasoline blended with 25 vol.% ethanol and gasoline blended with 16 and 24 vol.% isobutanol. Plastic materials included those used in flexible plastic piping and fiberglass resins. Other commonly used plastic materials were also evaluated. The plastic specimens were exposed to Fuel C, CE25a, CiBu16a, and CiBu24a for 16 weeks at 60oC.

Author(s):
Michael Kass
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This article summarises the compatibility of six elastomers – used in fuel
storage and delivery systems – with test fuels representing gasoline blended
with up to 85% ethanol. Individual coupons were exposed to test fuels for four
weeks to achieve saturation. The change in volume and hardness, when wetted
and after drying, were measured and compared with the original condition.

Author(s):
Michael Kass
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This paper estimates household preferences for ethanol as a gasoline substitute. I develop a theoretical
model linking the shape of the ethanol demand curve to the distribution of price ratios at which individual
households switch fuels. I estimate the model using data from many retail fueling stations. Demand
is price-sensitive with a mean elasticity of 2.5�3.5. I find that preferences are heterogeneous with many
households willing to pay a premium for ethanol. This reduces the simulated cost of an ethanol content

Author(s):
Soren Anderson

This report is an update of the original version, which was published in October 2008. This updated report includes results from the complete 16-vehicle fleet (the original report included only the first 13 vehicles tested) as well as corrections to minor errors identified in some of the originally reported data. Conclusions drawn from the complete dataset are nearly identical to those from the
original 13-vehicle fleet but with increased statistical confidence.

Author(s):
Knoll, Keith, West, Brian

We quantify the emergence of biofuel markets and its impact on U.S. and world agriculture for the coming decade using the multi-market, multi-commodity international FAPRI (Food and Agricultural Policy Research Institute) model. The model incorporates the trade-offs between biofuel, feed, and food production and consumption and international feedback effects of the emergence through world commodity prices and trade.

Author(s):
Fabiosa,Jacinto F.

The objective of the research here is to more carefully investigate the claims of localized
impacts on two fronts. The first is the impact a local ethanol plant has on the rate of agricultural
land conversion to other uses (if an ethanol plant increases the value of local agricultural land as
a result of increased commodity prices, one might expect a slower rate of conversion relative to
other communities). Second, we investigate whether the siting of an ethanol plant has had a
negative impact on local residential land values.

Author(s):
Alan Turnquist

In response to concerns about oil dependency and the contributions of fossil fuel use to climatic change, the U.S. Department of Energy has begun a research initiative to make 20% of motor fuels biofuel based in 10 years, and make 30% of fuels bio-based by 2030. Fundamental to this objective is developing an understanding of feedstock dynamics of crops suitable for cellulosic ethanol production. This report focuses on switchgrass, reviewing the existing literature from field trials across the United States, and compiling it for the first time into a single database.

Author(s):
Gunderson, Carla A.

The market for E85�a fuel blend of 85 percent ethanol and 15 percent gasoline�is small
but growing rapidly. I use data for E85 sales at fueling stations in Minnesota to estimate
demand for E85 as a function of retail E85 and gasoline prices. I find that demand is
highly sensitive to price changes, with an own-price elasticity as high as -13 and a gasolineprice
elasticity as high as 16 at sample mean price levels. Demand is most sensitive to
price changes when the relative price of E85 is at an intermediate level, at which point

Author(s):
Soren Anderson

Discussions of alternative fuel and propulsion technologies for transportation often overlook the infrastructure required to make these options practical and cost-effective. We estimate ethanol production facility locations and use a linear optimization model to consider the economic costs of distributing various ethanol fuel blends to all metropolitan areas in the United States. Fuel options include corn-based E5 (5% ethanol, 95% gasoline) to E16 from corn and switchgrass, as short-term substitutes for petroleum-based fuel.

Author(s):
William R. Morrow

This presentation summarizes findings of a life cycle analysis of the energy and environmental impacts of converting corn stove (the residue from corn harvesting) to ethanol.

Author(s):
Sheehan, J.

Technology for producing transportation fuel from biomass is moving out of the laboratory and into the marketplace. In the past decade, advances in biotechnology have allowed us to reduce the projected cost of bioethanol by nearly 25%.

Author(s):
Sheehan, J.

Limited fuel availability is a critical factor in the marketability of new fuels. A survey of us households is used to estimate the value of fuel availability and its influence on choice of fuel for a fuel-flexible vehicle and the choice of a dedicated-fuel engine for a vehicle. The marginal value of availability decreases as the percent of stations offering a new fuel increases. For fuel-flexible vehicles the cost of lack of availability decreases from us $0.35/gallon at 1% to US $0.02/gallon when 50% of stations offer the fuel.

Author(s):
David L. Greene

The U.S. biomass resource can be used several ways that provide domestic, renewable energy to users. Understanding the capacity of the biomass resource, its potential in energy markets, and the most economic utilization of biomass is important in policy development and project selection. This study analyzed the potential for biomass within markets and the competition between them.

Organization:
DOE

Interest in using biomass feedstocks to produce power, liquid fuels, and chemicals in the U.S. is increasing. Central to determining the potential for these industries to develop is an understanding of the location, quantities, and prices of biomass resources. This paper describes the methodology used to estimate biomass quantities and prices for each state in the continental U.S. An Excel™ spreadsheet contains estimates of biomass quantities potentially available in five categories: mill wastes, urban wastes, forest residues, agricultural residues and energy crops.