Skip to main content

KDF Search Results

Displaying 1 - 20 of 54

This spreadsheet serves as an Input file to the National Renewable Energy Laboratory's Waste-to-Energy System Simulation (WESyS) model developed in Stella Pro (isee systems, Lebanon, NH). WESyS is a national-level system dynamics model that simulates energy production from three sectors of the U.S. waste-to-energy industry: landfills, confined animal feeding operations (CAFOs), and publically owned treatment works (POTWs).

Author(s):
Daniel Inman, Annika Eberle, and Dylan Hettinger of the National Renewable Energy Laboratory; Steven Peterson and Corey Peck of Lexidyne, LLC.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy is the third in a series of Energy Department national assessments that have calculated the potential supply of biomass in the United States. The report concludes that the United States has the future potential to produce at least one billion dry tons of biomass resources (composed of agricultural, forestry, waste, and algal materials) on an annual basis without adversely affecting the environment.

Author(s):
Langholtz, M.H. , Eaton, L.M. , Stokes, B.J.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Biomass Scenario Model (BSM) is a system dynamics model that represents the entire biomass-to-biofuels supply chain, from feedstock to fuel use. It is a tool designed to better understand biofuels policy as it impacts the development of the supply chain for biofuels in the United States.

This page houses the BSM articles that have been published. For more information, see the link to NREL's list of publications on the BSM.

There is an inextricable link between energy production and food/feed/fiber cultivation with available water resources. Currently in the United States, agriculture represents the largest sector of consumptivewater usemaking up 80.7%of the total. Electricity generation in the U.S. is projected to increase by 24 % in the next two decades and globally, the production of liquid transportation fuels are forecasted to triple over the next 25-years, having significant impacts on the import/export market and global economies.

Author(s):
Brandon C. Moore
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Vimmerstedt, L. J., Bush, B. W., Hsu, D. D., Inman, D. and Peterson, S. O. (2014), Maturation of biomass-to-biofuels conversion technology pathways for rapid expansion of biofuels production: a system dynamics perspective. Biofuels, Bioprod. Bioref.. doi: 10.1002/bbb.1515
 
 
To explore this file download Tableau reader: http://www.tableausoftware.com/products/reader

Author(s):
NREL

Understanding the development of the biofuels industry in the United States is important to policymakers and industry. The Biomass Scenario Model (BSM) is a system dynamics model of the biomass-to-biofuels system that can be used to explore policy effects on biofuels development. Because of the complexity of the model, as well as the wide range of possible future conditions that affect biofuels industry development, we have not developed a single reference case but instead developed a set of specific scenarios that provide various contexts for our analyses.

Author(s):
Inman, D.; Vimmerstedt, L.; Bush, B.; Peterson, S.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Biomass Scenario Model (BSM) is a system dynamics model that represents the entire biomass-to-biofuels supply chain, from feedstock to fuel use. The BSM is a complex model that has been used for extensive analyses; the model and its results can be better understood if input data used for initialization and calibration are well-characterized. It has been carefully validated and calibrated against the available data, with data gaps filled in using expert opinion and internally consistent assumed values.

Author(s):
Lin, Y. ; , Newes, E. , Bush, B. , Peterson, S. , Stright, D.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Biomass Scenario Model: Supplemental Tableau workbook for Christopher M Clark et al 2013 Environ. Res. Lett. 8 025016 doi:10.1088/1748-9326/8/2/025016 Growing a sustainable biofuels industry: economics, environmental considerations, and the role of the Conservation Reserve Program

To explore this file download Tableau reader: http://www.tableausoftware.com/products/reader

This paper describes the current Biomass Scenario Model (BSM) as of August 2013, a system dynamics model developed under the support of the U.S. Department of Energy (DOE). The model is the result of a multi-year project at the National Renewable Energy Laboratory (NREL). It is a tool designed to better understand biofuels policy as it impacts the development of the supply chain for biofuels in the United States.

Author(s):
Peterson, Steve

Water sustainability is an integral part of the environmental sustainability. Water use, water quality, and the demand on water resource for bioenergy production can have potential impacts to food, feed, and fiber production and to our social well-being. With the support from United State Department of Energy, Argonne National Laboratory is developing a life cycle water use assessment tool for biofuels production at the national scale with multiple spatial resolutions.

Author(s):
May Wu

In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel conversion technology pathways are operating at commercial scales, while others are in earlier stages of development. The advancement of a new pathway toward commercialization involves various types of progress, including yield improvements, process engineering, and financial performance.

Author(s):
Laura J. Vimmerstedt , Brian W. Bush
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The use of plant biomass for energy has existed since humans mastered the use of fire, although utilization beyond the open fire has evolved. The concept of using recent biomass as a major energy feedstock is being revisited, driven by high consumer demand (growing population), declining domestic oil supplies, increasing cost of fossil fuels, and a desire to curb the emission of greenhouse gases (Johnson et al., 2007b).

Author(s):
Jane M. F. Johnson , David W. Archer , Douglas L. Karlen , Sharon L. Weyers , Wally W. Wilhelm

Biofuels are promoted in the United States through aggressive legislation, as one part of an overall strategy to lessen dependence on imported energy as well as to reduce the emissions of greenhouse gases (Office of the Biomass Program and Energy Efficiency and Renewable Energy, 2008). For example, the Energy Independence and Security Act of 2007 (EISA) mandates 36 billion gallons of renewable liquid transportation fuel in the U.S. marketplace by the year 2022 (U.S. Government, 2007).

Author(s):
Emily Newes, Daniel Inman, Brian Bush

Indicators are needed to assess environmental sustainability of bioenergy systems. Effective indicators
will help in the quantification of benefits and costs of bioenergy options and resource uses. We identify
19 measurable indicators for soil quality, water quality and quantity, greenhouse gases, biodiversity, air
quality, and productivity, building on existing knowledge and on national and international programs
that are seeking ways to assess sustainable bioenergy. Together, this suite of indicators is hypothesized

Author(s):
McBride, Allen

United States is experiencing increasing interests in fermentation and anaerobic digestion processes for the production of biofuels. A simple methodology of spatial biomass assessment is presented in this paper to evaluate biofuel production and support the first decisions about the conversion technology applications. The methodology was applied to evaluate the potential biogas and ethanol production from biomass in California and Washington states. Solid waste databases were filtered to a short list of digestible and fermentable wastes in both states.

Author(s):
U. Zaher

Meeting the Energy Independence and Security Act (EISA) renewable fuels goals requires development
of a large sustainable domestic supply of diverse biomass feedstocks. Macroalgae, also known as
seaweed, could be a potential contributor toward this goal. This resource would be grown in marine
waters under U.S. jurisdiction and would not compete with existing land-based energy crops.
Very little analysis has been done on this resource to date. This report provides information needed for an

Organization:
DOE
Author(s):
Roesijadi, G

Transitioning to a larger biofuels industry requires a robust biomass-to-biofuels system of systems that operates within existing agriculture, forestry, energy, and transportation markets. Using the existing fuel supply chain infrastructure as a framework, this paper discusses a vision for biomass-based fuels and the challenges associated with a massive market and infrastructure transformation.

Author(s):
Riley, Cynthia J. , Sandor, Debra
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

A Workshop for Oak Ridge National Laboratory (ORNL), the US Environmental Protection Agency (EPA), and their collaborators was held on September 10-11, 2009 at ORNL. The informal workshop focused on “Sustainability of Bioenergy Systems: Cradle to Grave.” The topics covered included sustainability issues associated with feedstock production and transport, production of biofuels and by-products, and delivery and consumption by the end users.

Author(s):
Vriginia Dale