Skip to main content

KDF Search Results

Displaying 1 - 20 of 33

This review on research on life cycle carbon accounting examines the complexities in accounting for carbon emissions given the many different ways that wood is used. Recent objectives to increase the use of renewable fuels have raised policy questions, with respect to the sustainability of managing our forests as well as the impacts of how best to use wood from our forests. There has been general support for the benefits of sustainably managing forests for carbon mitigation as expressed by the Intergovernmental Panel on Climate Change in 2007.

Author(s):
Lippke, Bruce

We quantify the emergence of biofuel markets and its impact on U.S. and world agriculture for the coming decade using the multi-market, multi-commodity international FAPRI (Food and Agricultural Policy Research Institute) model. The model incorporates the trade-offs between biofuel, feed, and food production and consumption and international feedback effects of the emergence through world commodity prices and trade.

Author(s):
Fabiosa,Jacinto F.

A working paper review of current approaches to accounting for indirect land-use changes in green house gas balances of biofuels. This report reviews the current effort made worldwide to address this issue. A
description of land-use concepts is first provided (Section 2) followed by a classification of
ILUC sources (Section 3). Then, a discussion on the implications of including ILUC
emissions in the GHG balance of biofuel pathways (Section 4) and a review of methodologies
being developed to quantify indirect land-use change (Section 5) are presented. Section 6

Author(s):
Gnansounou,Edgard

Fertilizers used to increase the yield of crops used for food or bio-based products can migrate through the environment and potentially cause adverse environmental impacts. Nitrogen fertilizers have a complex biogeochemical cycle. Through their transformations and partitioning among environmental compartments, they can contribute to eutrophication of surface waters at local and regional scales, groundwater degradation, acid rain, and climate change.

Author(s):
Powers, Susan E.

A series of life cycle assessments (LCA) have been conducted on biomass, coal, and natural gas systems in order to quantify the environmental benefits and drawbacks of each. The power generation options that were studied are: (1) a biomass-fired integrated gasification combined cycle (IGCC) system using a biomass energy crop, (2) a direct-fired biomass power plant using biomass residue, (3) a pulverized coal (PC) boiler representing an average U.S. coal-fired power plant, (4) a system cofiring biomass residue with coal, and (5) a natural gas combined cycle power plant.

Author(s):
Mann, M.K.

An analysis was performed at NREL to examine the global warming potential and energy balance of power generation from fossil and biomass systems including CO2 sequestration. To get the true environmental picture, a life cycle approach, which takes into account upstream process steps, was applied. Each system maintained the same constant generating capacity and any lost capacity due to CO2 sequestration was accounted for by adding power generation from a natural gas combined-cycle system. This paper discusses the systems examined and gives the net energy and GWP for each system.

Author(s):
Spath, Pam

The generation of electricity, and the consumption of energy in general, often result in adverse effects on the environment. Coal-fired power plants generate over half of the electricity used in the U.S., and therefore play a significant role in any discussion of energy and the environment. By cofiring biomass, currently-operating coal plants have an opportunity to reduce the impact they have, but to what degree, and with what trade-offs? A life cycle assessment (LCA) has been conducted on a coal-fired power system that cofires wood residue.

Author(s):
Spath, Pam

This report discusses the development of greenhouse gas (GHG) emissions estimates for the production of Fischer-Tropsch (FT) derived fuels (in particular, FT diesel), makes comparisons of these estimates to reported literature values for petroleum-derived diesel, and outlines strategies for substantially reducing these emissions.

Author(s):
Marano, John J.

Coal has the largest share of utility power generation in the U.S., accounting for approximately 56% of all utility-produced electricity (U.S. DOE, 1998). Therefore, understanding the environmental implications of producing electricity from coal is an important component of any plan to reduce total emissions and resource consumption.

Author(s):
Spath, Pam

It has become widely accepted that biomass power offers opportunities for reduced environmental impacts compared to fossil fuel-based systems. Intuitively obvious are the facts that per kilowatt-hour of energy produced, biomass systems will emit less CO2 and consume less non-renewable energy.

Author(s):
Mann, Margaret

Biodiesel is a renewable diesel fuel substitute. It can be made from a variety of natural oils and fats. Biodiesel is made by chemically combining any natural oil or fat with an alcohol such as methanol or ethanol. Methanol has been the most commonly used alcohol in the commercial production of biodiesel. In Europe, biodiesel is widely available in both its neat form (100% biodiesel, also know as B100) and in blends with petroleum diesel. European biodiesel is made predominantly from rapeseed oil (a cousin of canola oil).

Author(s):
Sheehan, J.

Biodiesel is a renewable diesel fuel substitute that can be made by chemically combining any natural oil or fat with an alcohol such as methanol or ethanol. Methanol has been the most commonly used alcohol in the commercial production of biodiesel. In Europe, biodiesel is widely available in both its neat form (100% biodiesel, also known as B100) and in blends with petroleum diesel. Most European biodiesel is made from rapeseed oil (a cousin of canola oil).

Author(s):
Sheehan, John

A life cycle assessment (LCA) on coal-fired power systems has been conducted to assess the environmental effects on a cradle-to-grave basis. Three different designs were studied: (1) a plant that represents the average emissions from coal-fired power plants in the U.S. today, (2) a plant that meets the New Source Performance Standards (NSPS), and (3) an advanced plant incorporating a low emission boiler system (LEBS).

Author(s):
Spath, Pam

Electric power production from biomass has the potential to make significant contributions to the power mix in the U.S., and to do so with substantially fewer environmental impacts than current technologies. Using dedicated energy crops for power production will significantly close the carbon cycle, reduce and stabilize feedstock costs, increase the feasible size of biomass power plants, and provide economic benefits to agricultural communities.

Author(s):
Mann, Maggie

EXECUTIVE SUMMARY: Life cycle assessment (LCA) is a powerful tool that may be used to quantify the environmental impacts of products and services. It includes all processes, from cradle-to-grave, along the supply chain of the product. When analysing energy systems, greenhouse gas (GHG) emissions (primarily CO2, CH4 and N2O) are the impact of primary concern. In using LCA to determine the climate change mitigation benefits of bioenergy, the life cycle emissions of the bioenergy system are compared with the emissions for a reference energy system.

Despite a rapid worldwide expansion of the biofuel industry, there is a lack of consensus within the scientific community about the potential of biofuels to reduce reliance on petroleum and decrease greenhouse gas (GHG) emissions. Although life cycle assessment provides a means to quantify these potential benefits and environmental impacts, existing methods limit direct comparison within and between different biofuel systems because of inconsistencies in performance metrics, system boundaries, and underlying parameter values.