Skip to main content

KDF Search Results

Displaying 1 - 20 of 62

This dataset was utilized in a report to highlight parameters that affect near-term sustainable supply of corn stover and forest resources at $56 and $74 per dry ton delivered. While the report focus is restricted to 2018, the modeling runs are available from 2016-2022. In the 2016 Billion-ton Report (BT16), two stover cases were presented. In this dataset, we vary technical levels of those assumptions to measure stover supply response and to evaluate the major determinants of stover supply.

Author(s):
Maggie Davis , Laurence Eaton , Matt Langholtz
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Conventional feedstock supply systems exist and have been developed for traditional agriculture and forestry systems. These conventional feedstock supply systems can be effective in high biomass-yielding areas (such as for corn stover in Iowa and plantation-grown pine trees in the southern United States), but they have their limits, particularly with respect to addressing feedstock quality and reducing feedstock supply risk to biorefineries. They also are limited in their ability to efficiently deliver energy crops.

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Biomass Scenario Model (BSM) is a system dynamics model that represents the entire biomass-to-biofuels supply chain, from feedstock to fuel use. It is a tool designed to better understand biofuels policy as it impacts the development of the supply chain for biofuels in the United States.

This page houses the BSM articles that have been published. For more information, see the link to NREL's list of publications on the BSM.

A framework for selecting and evaluating indicators of bioenergy sustainability is presented.
This framework is designed to facilitate decision-making about which indicators are useful for assessing
sustainability of bioenergy systems and supporting their deployment. Efforts to develop sustainability
indicators in the United States and Europe are reviewed. The fi rst steps of the framework for
indicator selection are defi ning the sustainability goals and other goals for a bioenergy project or program,

Author(s):
Virginia Dale
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Abstract: Farmgate prices (i.e. price delivered roadside ready for loading and transport) for biomass feedstocks directly infl uence biofuel prices. Using the latest available data, marginal (i.e. price for the last ton) farmgate prices of $51, $63, and $67 dry ton–1 ($2011) are projected as necessary to provide 21 billion gallons of biofuels from about 250 million dry tons of terrestrial feedstocks in 2022 under price-run deterministic, demand-run deterministic, and stochastic simulations, respectively.

Author(s):
Matthew Langholtz , Laurence Eaton , Anthony Turhollow , Michael Hilliard

Vimmerstedt, L. J., Bush, B. W., Hsu, D. D., Inman, D. and Peterson, S. O. (2014), Maturation of biomass-to-biofuels conversion technology pathways for rapid expansion of biofuels production: a system dynamics perspective. Biofuels, Bioprod. Bioref.. doi: 10.1002/bbb.1515
 
 
To explore this file download Tableau reader: http://www.tableausoftware.com/products/reader

Author(s):
NREL

Understanding the development of the biofuels industry in the United States is important to policymakers and industry. The Biomass Scenario Model (BSM) is a system dynamics model of the biomass-to-biofuels system that can be used to explore policy effects on biofuels development. Because of the complexity of the model, as well as the wide range of possible future conditions that affect biofuels industry development, we have not developed a single reference case but instead developed a set of specific scenarios that provide various contexts for our analyses.

Author(s):
Inman, D.; Vimmerstedt, L.; Bush, B.; Peterson, S.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Biomass Scenario Model (BSM) is a system dynamics model that represents the entire biomass-to-biofuels supply chain, from feedstock to fuel use. The BSM is a complex model that has been used for extensive analyses; the model and its results can be better understood if input data used for initialization and calibration are well-characterized. It has been carefully validated and calibrated against the available data, with data gaps filled in using expert opinion and internally consistent assumed values.

Author(s):
Lin, Y. ; , Newes, E. , Bush, B. , Peterson, S. , Stright, D.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

A global energy crop productivity model that provides geospatially explicit quantitative details on biomass
potential and factors affecting sustainability would be useful, but does not exist now. This study describes a
modeling platform capable of meeting many challenges associated with global-scale agro-ecosystem modeling.
We designed an analytical framework for bioenergy crops consisting of six major components: (i) standardized
natural resources datasets, (ii) global field-trial data and crop management practices, (iii) simulation units and

Author(s):
SHUJIANG KANG
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Biomass Scenario Model: Supplemental Tableau workbook for Christopher M Clark et al 2013 Environ. Res. Lett. 8 025016 doi:10.1088/1748-9326/8/2/025016 Growing a sustainable biofuels industry: economics, environmental considerations, and the role of the Conservation Reserve Program

To explore this file download Tableau reader: http://www.tableausoftware.com/products/reader

This paper describes the current Biomass Scenario Model (BSM) as of August 2013, a system dynamics model developed under the support of the U.S. Department of Energy (DOE). The model is the result of a multi-year project at the National Renewable Energy Laboratory (NREL). It is a tool designed to better understand biofuels policy as it impacts the development of the supply chain for biofuels in the United States.

Author(s):
Peterson, Steve

In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel conversion technology pathways are operating at commercial scales, while others are in earlier stages of development. The advancement of a new pathway toward commercialization involves various types of progress, including yield improvements, process engineering, and financial performance.

Author(s):
Laura J. Vimmerstedt , Brian W. Bush
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability.

Author(s):
Robert Boundy , Susan W. Diegel , Lynn Wright , Stacy C. Davis
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This paper focuses ont he patterns of farmers' choices regarding dedicated perennial lignocellulosic energy crops.   We focus on choices abou perennial crops because two thirds of the mandated advanced biofuels are expected to be converted at biorefineries from perennials (USDA 2010). 

Author(s):
Amy K. Wolfe

The production of biobased feedstocks (i.e., plant– or algal-based material use for transportation fuels, heat, power and bioproducts) for energy consumption has been expanding rapidly in recent years. Biomass now accounts for 4.1% of total U.S. primary energy production. Unfortunately, there are considerable knowledge gaps relative to implications of this industry expansion for wildlife.

Author(s):
Rupp, S. P., L. Bies, A. Glaser, C. Kowaleski, T. McCoy, T. Rentz, S. Riffell, J. Sibbing, J. Verschuyl, and T. Wigley.

Nationwide spatial dataset representing the polygon areas for first-generation suitability analysis of potentially suitable areas for microalgae open ponds. The PNNL microalgae growth model results for each site are included in the attribute table and assume growth based on theoretical limits. Sites represent a minimum mapping unit of 490 hectares. Land suitability included area less than or equal to 1% slope on non-agricultural, undeveloped or low‐density developed, nonsensitive, generally noncompetitive land was considered for microalgal culture facilities.

Biofuels are promoted in the United States through aggressive legislation, as one part of an overall strategy to lessen dependence on imported energy as well as to reduce the emissions of greenhouse gases (Office of the Biomass Program and Energy Efficiency and Renewable Energy, 2008). For example, the Energy Independence and Security Act of 2007 (EISA) mandates 36 billion gallons of renewable liquid transportation fuel in the U.S. marketplace by the year 2022 (U.S. Government, 2007).

Author(s):
Emily Newes, Daniel Inman, Brian Bush

Microalgae are receiving increased global attention as a potential sustainable “energy crop”for biofuel production. An important step to realizing the potential of algae is quantifying the demands commercial‐scale algal biofuel production will place on water and land resources. We present a high‐resolution spatiotemporal assessment that brings to bear fundamental questions of where production can occur, how many land and water resources are required, and how much energy is produced.

Author(s):
Wigmosta, Mark

United States is experiencing increasing interests in fermentation and anaerobic digestion processes for the production of biofuels. A simple methodology of spatial biomass assessment is presented in this paper to evaluate biofuel production and support the first decisions about the conversion technology applications. The methodology was applied to evaluate the potential biogas and ethanol production from biomass in California and Washington states. Solid waste databases were filtered to a short list of digestible and fermentable wastes in both states.

Author(s):
U. Zaher