Skip to main content

The Impact of Corn Stover Removal on N2O Emission and Soil Respiration

Corn stover removal, whether for silage, bedding, or bioenergy production, could have a variety of environmental consequences through its effect on soil processes, particularly N2O production and soil respiration. Because these effects may be episodic in nature, weekly snapshots with static chambers may not provide a complete picture. We adapted commercially available automated soil respiration chambers by incorporating a portable N2O analyzer, allowing us to measure both CO2 and N2O fluxes on an hourly basis through two growing seasons in a corn field in southern Minnesota, from spring 2010 to spring 2012. This site was part of a USDA multilocation research project for five growing seasons, 2008–2012, with three levels of stover removal: zero, full, and intermediate. Initially in spring 2010, two chambers were placed in each of the treatments, but following planting in 2011, the configuration was changed, with four chambers installed on zero removal plots and four on full removal plots. The cumulative data revealed no significant difference in N2O emission as a function of stover removal. CO2 loss from the full removal plots was slightly lower than that from the zero removal plots, but the difference between treatments was much smaller than the amount of C removed in the residue, implying loss of soil carbon from the full removal plots. This is consistent with soil sampling data, which showed that in five of six sampled blocks, the SOC change in the full removal treatments was negative relative to the zero removal plots. We conclude that (a) full stover removal may have little impact on N2O production, and (b) while it will reduce soil CO2 production, the reduction will not be commensurate with the decrease in fresh carbon inputs and, thus, will result in SOC loss.

John M. Baker , Joel Fassbinder , John A. Lamb
Bioenergy Category
Publication Date
DOI is live on OSTI.