Landscape ecology focuses on the spatial patterns and processes of ecological and human interactions. These patterns and processes are being altered by both changing resource-management practices of humans and changing climate conditions associated, in part, with increases in atmospheric concentrations of greenhouse gases. Dominant resource-extraction and land-management activities involve energy, and the use of fossil energy is one of the key drivers behind increasing greenhouse gas emissions as well as land-use changes. Alternative energy sources (such as wind, solar, nuclear, and bioenergy) are being explored to reduce greenhouse gas emission rates. Yet, energy production, including alternative-energy options, can have a wide range of effects on land productivity, surface cover, albedo, and other factors that affect carbon, water, and energy fluxes and, in turn, climate. Meanwhile, climate influences the potential output, relative efficiencies, and sustainability of alternative energy sources. Thus, land use, climate change, and energy choices are linked, and any comprehensive analysis in landscape ecology that considers one of these factors should be cognizant of these interactions. This analysis explores the implications of linkages between land use, climate change, and energy and points out ecological patterns and processes that may be affected by their interaction.

Contact Information
Contact Person: 
Virginia Dale
Contact Organization: 
Center for BioEnergy Sustainability, Oak Ridge National Laboratory
Publication Information
DOE Information
Bioenergy Category: