Skip to main content

KDF Search Results

Displaying 1 - 20 of 49

Reducing dependence on fossil‐based energy has raised interest in biofuels as a potential energy source, but concerns have been raised about potential implications for water quality. These effects may vary regionally depending on the biomass feedstocks and changes in land management. Here, we focused on the Tennessee River Basin (TRB), USA.

Organization:
DOE
Author(s):
Wang, Gangsheng , Jager, Henriette
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Price Scenarios at $54 and $119 were simulated for Switchgrass, Miscanthus and Willow production from 2017 to 2040. These analyses were used in Woodbury, Peter B., et al. 2018. "Improving water quality in the Chesapeake Bay using payments for ecosystem services for perennial biomass for bioenergy and biofuel production." Biomass and Bioenergy 114:132-142. doi: https://doi.org/10.1016/j.biombioe.2017.01.024.

Organization:
USDA
Author(s):
Maggie R. Davis

The development of modern high efficiency bioenergy technologies has the
potential to improve energy security and access while reducing environmental impacts
and stimulating low-carbon development. While modern bioenergy production is
increasing in the world, it still makes a small contribution to our energy matrix.
At present, approximately 87% of energy demand is satisfied by energy produced
through consumption of fossil fuels. Although the International Energy Agency (IEA)

Author(s):
Joly, CA , Huntley, BJ , Verdade, LM , Dale, VH , Mace, G , Muok, B , Ravindranath, NH

For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management.

Author(s):
R. A. Efroymson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c.

Author(s):
Virginia H. Dale , Esther S. Parish , Keith L. Kline
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Net benefits of bioenergy crops, including maize and perennial grasses such as switchgrass, are a function of several factors including the soil organic carbon (SOC) sequestered by these crops. Life cycle assessments (LCA) for bioenergy crops have been conducted using models in which SOC information is usually from the top 30 to 40 cm. Information on the effects of crop management practices on SOC has been limited so LCA models have largely not included any management practice effects.

Author(s):
Ronald F. Follett , Kenneth P. Vogel , Gary E. Varvel , Robert B. Mitchell , John Kimble

Abstract: Unfavorable weather can significantly impact the production and provision of agriculture-based biomass feedstocks such as Miscanthus and switchgrass. This work quantified the impact of regional weather on the feedstock production systems using the BioFeed modeling framework. Weather effects were incorporated in BioFeed by including the probability of working day (pwd) parameter in the model, which defined the fraction of days in a specific period such as two weeks that were suitable for field operations.

Author(s):
Shastri, Yogendra

The increasing demand for bioenergy crops presents our society with the opportunity to design more sustainable landscapes. We have created a Biomass Location for Optimal Sustainability Model (BLOSM) to test the hypothesis that landscape design of cellulosic bioenergy crop plantings may simultaneously improve water quality (i.e. decrease concentrations of sediment, total phosphorus, and total nitrogen) and increase profits for farmer-producers while achieving a feedstock-production goal.

Author(s):
Parish, ES

Adding bioenergy to the U.S. energy portfolio requires long‐term profitability for bioenergy producers and
long‐term protection of affected ecosystems. In this study, we present steps along the path toward evaluating both sides of
the sustainability equation (production and environmental) for switchgrass (Panicum virgatum) using the Soil and Water
Assessment Tool (SWAT). We modeled production of switchgrass and river flow using SWAT for current landscapes at a

Relationships between people and their environment are largely defined by land use. Space and soil are needed for native plants and wildlife, as well as for crops used for food, feed, fiber, wood products and biofuel (liquid fuel derived from plant material). People also use land for homes, schools, jobs, transportation, mining and recreation. Social and economic forces influence the allocation of land to various uses.

Author(s):
Virginia Dale

Relationships between people and their environment are largely defined by land use. Space and soil are needed for native plants and wildlife, as well as for crops used for food, feed, fiber, wood products and biofuel (liquid fuel derived from plant material). People also use land for homes, schools, jobs, transportation, mining and recreation. Social and economic forces influence the allocation of land to various uses. The

Author(s):
Virginia H. Dale

As the US begins to integrate biomass crops and residues into its mix of energy feedstocks, tools are needed to measure the long-term sustainability of these feedstocks. Two aspects of sustainability are long-term potential for profitably producing energy and protection of ecosystems influenced by energy-related activities. The Soil and Water Assessment Tool (SWAT) is an important model used in our efforts to quantify both aspects. To quantify potential feedstock production, we used SWAT to estimate switchgrass yields at a national scale.

Author(s):
Baskaran, Latha

We quantify the emergence of biofuel markets and its impact on U.S. and world agriculture for the coming decade using the multi-market, multi-commodity international FAPRI (Food and Agricultural Policy Research Institute) model. The model incorporates the trade-offs between biofuel, feed, and food production and consumption and international feedback effects of the emergence through world commodity prices and trade.

Author(s):
Fabiosa,Jacinto F.

In response to concerns about oil dependency and the contributions of fossil fuel use to climatic change, the U.S. Department of Energy has begun a research initiative to make 20% of motor fuels biofuel based in 10 years, and make 30% of fuels bio-based by 2030. Fundamental to this objective is developing an understanding of feedstock dynamics of crops suitable for cellulosic ethanol production. This report focuses on switchgrass, reviewing the existing literature from field trials across the United States, and compiling it for the first time into a single database.

Author(s):
Gunderson, Carla A.

The harvest of corn stover or herbaceous crops as feedstocks for bioenergy purposes has been shown to have significant benefits from energy and climate change perspectives. There is a potential, however, to adversely impact water and soil quality, especially in Midwestern states where the biomass feedstock production would predominantly occur.

Author(s):
Nelson, Richard

This study presents the results of comparing land use estimates between three different data sets for the Upper Mississippi River Basin (UMRB). The comparisons were performed between the U.S. Department of Agriculture (USDA) Natural Resource Conservation Service (NRCS) National Resource Inventory (NRI), the U.S. Geological Survey (USGS) National Land Cover Data (NLCD) database, and a combined USDA National Agricultural Statistics Service (NASS) Agricultural Census – NLCD dataset created to support applications of the Hydrologic Unit Model for the U.S. (HUMUS).

Author(s):
Santhi, Chinnisamy

National interests in greater energy independence, concurrent with favorable market forces, have driven increased production of corn-based ethanol in the United States and research into the next generation of biofuels. The trend is changing the national agricultural landscape and has raised concerns about potential impacts on the nation?s water resources. This report examines some of the key issues and identifies opportunities for shaping policies that help to protect water resources.

Author(s):
Schnoor, Jerald

Discussions of alternative fuel and propulsion technologies for transportation often overlook the infrastructure required to make these options practical and cost-effective. We estimate ethanol production facility locations and use a linear optimization model to consider the economic costs of distributing various ethanol fuel blends to all metropolitan areas in the United States. Fuel options include corn-based E5 (5% ethanol, 95% gasoline) to E16 from corn and switchgrass, as short-term substitutes for petroleum-based fuel.

Author(s):
William R. Morrow

Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution.

Author(s):
Verburg,P.H.

Power generation emits significant amounts of greenhouse gases (GHGs), mainly carbon dioxide (CO2). Sequestering CO2 from the power plant flue gas can significantly reduce the GHGs from the power plant itself, but this is not the total picture. CO2 capture and sequestration consumes additional energy, thus lowering the plant's fuel-to-electricity efficiency. To compensate for this, more fossil fuel must be procured and consumed to make up for lost capacity.

Author(s):
Spath, Pam