Skip to main content

KDF Search Results

Displaying 1 - 20 of 85

Link to the website with documentation and download instructions for the PNNL Global Change Assessment Model (GCAM), a community model or long-term, global energy, agriculture, land use, and emissions. BioEnergy production, transformation, and use is an integral part of GCAM modeling and scenarios.

http://jgcri.github.io/gcam-doc/

Author(s):
Marshall Wise
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The compatibility of elastomeric materials used in fuel storage and dispensing applications was determined for test fuels
representing neat gasoline and gasoline blends containing 10 and 17 vol.% ethanol, and 16 and 24 vol.% isobutanol. The
actual test fuel chemistries were based on the aggressive formulations described in SAE J1681 for oxygenated gasoline.
Elastomer specimens of fluorocarbon, fluorosilicone, acrylonitrile rubber (NBR), polyurethane, neoprene, styrene

Author(s):
Michael Kass
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The compatibility of plastic materials used in fuel storage and dispensing applications was determined for test fuels representing gasoline blended with 25 vol.% ethanol and gasoline blended with 16 and 24 vol.% isobutanol. Plastic materials included those used in flexible plastic piping and fiberglass resins. Other commonly used plastic materials were also evaluated. The plastic specimens were exposed to Fuel C, CE25a, CiBu16a, and CiBu24a for 16 weeks at 60oC.

Author(s):
Michael Kass
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This article summarises the compatibility of six elastomers – used in fuel
storage and delivery systems – with test fuels representing gasoline blended
with up to 85% ethanol. Individual coupons were exposed to test fuels for four
weeks to achieve saturation. The change in volume and hardness, when wetted
and after drying, were measured and compared with the original condition.

Author(s):
Michael Kass
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This paper estimates household preferences for ethanol as a gasoline substitute. I develop a theoretical
model linking the shape of the ethanol demand curve to the distribution of price ratios at which individual
households switch fuels. I estimate the model using data from many retail fueling stations. Demand
is price-sensitive with a mean elasticity of 2.5�3.5. I find that preferences are heterogeneous with many
households willing to pay a premium for ethanol. This reduces the simulated cost of an ethanol content

Author(s):
Soren Anderson

A primary objective of current U.S. biofuel law – the “Energy Independence and Security Act of 2007” (EISA) – is to reduce dependence on imported oil, but the law also requires biofuels to meet carbon emission reduction thresholds relative to petroleum fuels. EISA created a renewable fuel standard with annual targets for U.S. biofuel use that climb gradually from 9 billion gallons per year in 2008 to 36 billion gallons (or about 136 billion liters) of biofuels per year by 2022. The most controversial aspects of U.S.

Author(s):
Keith L. Kline , Gbadebo Oladosu

This report is an update of the original version, which was published in October 2008. This updated report includes results from the complete 16-vehicle fleet (the original report included only the first 13 vehicles tested) as well as corrections to minor errors identified in some of the originally reported data. Conclusions drawn from the complete dataset are nearly identical to those from the
original 13-vehicle fleet but with increased statistical confidence.

Author(s):
Knoll, Keith, West, Brian

This is an article from Science Magazine from October 2008. Science-based policy is essential for guiding an environmentally sustainable approach to cellulosic biofuels. The May 2008 passage of the 2008 Farm Bill raises the stakes for biofuel sustainability: A substantial subsidy for the production of cellulosic ethanol starts the United States again down a path with uncertain environmental consequences.

Author(s):
Robertson G. Philip

We quantify the emergence of biofuel markets and its impact on U.S. and world agriculture for the coming decade using the multi-market, multi-commodity international FAPRI (Food and Agricultural Policy Research Institute) model. The model incorporates the trade-offs between biofuel, feed, and food production and consumption and international feedback effects of the emergence through world commodity prices and trade.

Author(s):
Fabiosa,Jacinto F.

The objective of the research here is to more carefully investigate the claims of localized
impacts on two fronts. The first is the impact a local ethanol plant has on the rate of agricultural
land conversion to other uses (if an ethanol plant increases the value of local agricultural land as
a result of increased commodity prices, one might expect a slower rate of conversion relative to
other communities). Second, we investigate whether the siting of an ethanol plant has had a
negative impact on local residential land values.

Author(s):
Alan Turnquist

A working paper review of current approaches to accounting for indirect land-use changes in green house gas balances of biofuels. This report reviews the current effort made worldwide to address this issue. A
description of land-use concepts is first provided (Section 2) followed by a classification of
ILUC sources (Section 3). Then, a discussion on the implications of including ILUC
emissions in the GHG balance of biofuel pathways (Section 4) and a review of methodologies
being developed to quantify indirect land-use change (Section 5) are presented. Section 6

Author(s):
Gnansounou,Edgard

Biofuels from land-rich tropical countries may help displace foreign petroleum imports for many industrialized nations, providing a possible solution to the twin challenges of energy security and climate change. But concern is mounting that crop-based biofuels will increase net greenhouse gas emissions if feedstocks are produced by expanding agricultural lands. Here we quantify the ?carbon payback time? for a range of biofuel crop expansion pathways in the tropics.

Author(s):
Gibbs, H.K.

Land-use changes are frequently indicated to be one of the main human-induced factors influencing the groundwater system. For land-use change, groundwater research has mainly focused on the change in water quality thereby neglecting changes in quantity. The objective of this paper is to assess the impact of land-use changes, from 2000 until 2020, on the hydrological balance and in particular on groundwater quantity, as results from a case study in the Kleine Nete basin, Belgium.

Author(s):
Dams, J.

In this paper we investigate the potential production and implications of a global biofuels industry. We develop alternative approaches to the introduction of land as an economic factor input, in value and physical terms, into a computable general equilibrium framework. Both approach allows us to parameterize biomass production in a manner consistent with agro-engineering information on yields and a ?second generation? cellulosic biomass conversion technology.

Author(s):
Gurgel, Angelo

National interests in greater energy independence, concurrent with favorable market forces, have driven increased production of corn-based ethanol in the United States and research into the next generation of biofuels. The trend is changing the national agricultural landscape and has raised concerns about potential impacts on the nation?s water resources. This report examines some of the key issues and identifies opportunities for shaping policies that help to protect water resources.

Author(s):
Schnoor, Jerald

The market for E85�a fuel blend of 85 percent ethanol and 15 percent gasoline�is small
but growing rapidly. I use data for E85 sales at fueling stations in Minnesota to estimate
demand for E85 as a function of retail E85 and gasoline prices. I find that demand is
highly sensitive to price changes, with an own-price elasticity as high as -13 and a gasolineprice
elasticity as high as 16 at sample mean price levels. Demand is most sensitive to
price changes when the relative price of E85 is at an intermediate level, at which point

Author(s):
Soren Anderson

Discussions of alternative fuel and propulsion technologies for transportation often overlook the infrastructure required to make these options practical and cost-effective. We estimate ethanol production facility locations and use a linear optimization model to consider the economic costs of distributing various ethanol fuel blends to all metropolitan areas in the United States. Fuel options include corn-based E5 (5% ethanol, 95% gasoline) to E16 from corn and switchgrass, as short-term substitutes for petroleum-based fuel.

Author(s):
William R. Morrow

Power generation emits significant amounts of greenhouse gases (GHGs), mainly carbon dioxide (CO2). Sequestering CO2 from the power plant flue gas can significantly reduce the GHGs from the power plant itself, but this is not the total picture. CO2 capture and sequestration consumes additional energy, thus lowering the plant's fuel-to-electricity efficiency. To compensate for this, more fossil fuel must be procured and consumed to make up for lost capacity.

Author(s):
Spath, Pam