Skip to main content

KDF Search Results

Displaying 1 - 20 of 88

on environment friendly and socio-economically sustainable renewable energy sources. However, commercial production of bioenergy is constrained by biomass supply uncertainty and associated costs. This study presents an integrated approach to determining the optimal biofuel supply chain considering biomass yield uncertainty. A two-stage stochastic mixed integer linear programming is utilized to minimize the expected system cost while incorporating yield uncertainty in the strategic level decisions related to biomass production and biorefinery investment.

Author(s):
Sharma, B. P. , T. E. Yu , B. C. English , C. Boyer , J. A. Larson

Perennial grasses are touted as sustainable feedstocks for energy production. Such benefits, however, may be offset if excessive nitrogen (N) fertilization leads to economic and environmental issues. Furthermore, as yields respond to changes in climate, nutrient requirements will change, and thus guidance on minimal N inputs is necessary to ensure sustainable bioenergy production.

Organization:
DOE
Author(s):
Huaihai Chen , Zhongmin Dai , Henriette I. Jager , Stan D. Wullschleger , Jianming Xu , Christopher W. Schadt
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Practicing agriculture decreases downstream water quality when compared to non-agricultural lands. Agricultural watersheds that also grow perennial biofuel feedstocks can be designed to improve water quality compared to agricultural watersheds without perennials. The question then becomes which conservation practices should be employed and where in the landscape should they be situated to achieve water quality objectives when growing biofuel feedstocks.

Organization:
DOE
Author(s):
Jasmine A.F. Kreig , Herbert Ssegane , Indrajeet Chaubey , Maria C. Negri , Henriette I. Jager
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Producing renewable fuel from dedicated energy crops, such as switchgrass, has the potential to generate localized environmental benefits. This study uses high-resolution spatial data for west Tennessee to quantify the effects of producing switchgrass for cellulosic ethanol on the grey water footprint (GWF), or the amount of freshwater needed to dilute nitrate leachate to a safe level, relative to existing agricultural production.

Author(s):
Zhong, J. , T. E. Yu , C. D. Clark , B. C. English , J. A. Larson , C. L. Cheng

Switchgrass (Panicum virgatum L.), a native of the North American prairies, has been selected for bioenergy research. With a focus on biomass yield improvement, this study aim (i) to estimate the genetic variation in biomass yield and important agronomic traits in ‘Alamo’, (ii) to determine correlations between biomass yield and agronomic traits, and (iii) to compare efficiency of phenotypic selection from a sward plot and advanced cycle half-sibs (ACHS) on the basis of space-plant performance.

Author(s):
Dalid, C. , A. M. Saxton , F. L. Allen , V. R. Pantalone , S. Nayak , H. Bhandari

Despite of the key role that short rotation woody crops (SRWC) play in supporting bioenergy and the bioeconomy, questions arise about the sustainability of bioenergy. Is it net energy efficient? Is bioenergy carbon neutral? Do SRWC plantations adversely affect food security by competing for land with agriculture? How will SRWC affect biodiversity and provision of environmental services? Answers are elusive and definitive answers require considering specific technology applied at a specific location.

Author(s):
Stanturf J. , T. M. Young , J. H. Perdue

The biobased economy is playing an increasingly important role in the American economy.

Through innovations in renewable energies and the emergence of a new generation of biobased products, the sectors that drive the biobased economy are providing job creation and economic growth. To further understand and analyze trends in the biobased economy, this report compares 2011 and 2016 report data.

Organization:
USDA
Author(s):
Jay S. Golden , Robert Handfield , Janire Pascual-Gonzalez , Ben Agsten , Taylor Brennan , Lina Khan , Emily True

Advanced biomass feedstocks tend to provide more non-fuel ecosystem goods and services (ES) than 1st-generation alternatives. We explore the idea that payment for non-fuel ES could facilitate market penetration of advanced biofuels by closing the profitability gap. As a specific example, we discuss the Mississippi-Atchafalaya River Basin (MARB), where 1st-generation bioenergy feedstocks (e.g., corn-grain) have been integrated into the agricultural landscape.

Organization:
DOE
Author(s):
Henriette I.Jager , Rebecca A. Efroymson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Ecological disturbances are occurring with greater frequency and intensity than in the past. Under projected shifts in disturbance regimes and patterns of recovery, societal and environmental impacts are expected to be more extreme and to span larger spatial extents. Moreover, preexisting conditions will require a longer time to re‐establish, if they do so at all. The word “unprecedented” is appearing more often in news reporting on droughts, fires, hurricanes, tsunamis, ice storms, and insect outbreaks.

Organization:
DOE
Author(s):
Virginia H Dale , Henriette I Jager , Amy K Wolfe , Rebecca A Efroymson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Policy makers are interested in estimates of the potential economic impacts of oil price shocks, particularly during periods of rapid and large increases that accompany severe supply shocks. Literature estimates of the economic impacts of oil price shocks, summarized by the oil price elasticity of GDP, span a very wide range due to both fundamental economic and methodological factors. This paper presents a quantitative meta-analysis of the oil price elasticity of GDP for net oil importing countries, with a focus on the United States (US).

Organization:
DOE
Author(s):
Gbadebo A.Oladosu , Paul N.Leiby , David C.Bowman , Rocio Uría-Martínez , Megan M.Johnson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Several crops have recently been identified as potential dedicated bioenergy feedstocks for the production of power, fuels, and bioproducts. Despite being identified as early as the 1980s, no systematic work has been undertaken to characterize the spatial distribution of their long‐term production potentials in the United states.

Organization:
USDA
Author(s):
Christopher Daly , Michael D. Halbleib , David B. Hannaway , Laurence M. Eaton
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

We explore the role of biofuels in mitigating the negative impacts of oil supply shocks on fuel markets under a range of oil price trajectories and biofuel blending mandate levels. Using a partial equilibrium model of US biofuels production and petroleum fuels trade, we discuss the adjustments in light‐duty vehicle fuel mix, fuel prices, and renewable identification number (RIN) prices following each shock as well as the distribution of shock costs across market participants. Ethanol is used as both a complement (blend component in E10) and a substitute (in E15 and E85 blends) to gasoline.

Author(s):
Uría-Martínez, R. , Leiby, P. N. , Brown, M. L.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The ongoing debate about costs and benefits of wood‐pellet based bioenergy production in the southeastern United States (SE USA) requires an understanding of the science and context influencing market decisions associated with its sustainability. Production of pellets has garnered much attention as US exports have grown from negligible amounts in the early 2000s to 4.6 million metric tonnes in 2015. Currently, 98% of these pellet exports are shipped to Europe to displace coal in power plants.

Organization:
DOE
Author(s):
Virginia H. Dale , Keith L. Kline , Esther S. Parish , Annette L. Cowie , Robert Emory , Robert W. Malmsheimer , Raphael Slade , Charles Tattersall (Tat) SMITH Jr
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Wood pellet exports from the Southeastern United States (SE US) to Europe have been increasing in response to European Union member state policies to displace coal with renewable biomass for electricity generation. An understanding of the interactions among SE US forest markets, forest management, and forest ecosystem services is required to quantify the effects of pellet production compared to what would be expected under a reference case or ‘counterfactual scenario’ without pellet production.

Organization:
DOE
Author(s):
Esther S. Parish , Virginia H. Dale , Keith L. Kline , Robert C. Abt
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Published in Bioenergy and Land Use Change (pp. 141–153). John Wiley & Sons, Inc.

Organization:
DOE
Author(s):
Nagendra Singh , Keith L. Kline , Rebecca A. Efroymson , Budhendra Bhaduri , Bridget O'Banion
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

To date, feedstock resource assessments have evaluated cellulosic and algal feedstocks independently, without consideration of demands for, and resource allocation to, each other. We assess potential land competition between algal and terrestrial feedstocks in the United States, and evaluate a scenario in which 41.5 × 109 L yr−1 of second-generation biofuels are produced on pastureland, the most likely land base where both feedstock types may be deployed.

Organization:
DOE
Author(s):
Langholtz, M. , A. M. Coleman , L.M. Eaton , M. S. Wigmosta , Chad Hellwinckel , Craig C. Brandt
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

We propose a causal analysis framework to increase understanding of land-use change (LUC) and the reliability of LUC models. This health-sciences-inspired framework can be applied to determine probable causes of LUC in the context of bioenergy. Calculations of net greenhouse gas (GHG) emissions for LUC associated with biofuel production are critical in determining whether a fuel qualifies as a biofuel or advanced biofuel category under regional (EU), national (US, UK), and state (California) regulations.

Organization:
DOE
Author(s):
Efroymson RA , Kline KL , Angelsen A , Verburg PH , Dale VH , Langeveld JWA , McBride A
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Understanding the complex interactions among food security, bioenergy sustainability, and resource management requires a focus on specific contextual problems and opportunities. The United Nations’ 2030 Sustainable Development Goals place a high priority on food and energy security; bioenergy plays an important role in achieving both goals.

Organization:
DOE
Author(s):
Kline KL , Msangi S , Dale VH , Woods J , Souza G , Osseweijer P , Clancy J , Hilbert J , Mugera H , McDonnell P , Johnson F
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Production of bioenergy from cellulosic sources is likely to increase due to mandates, tax incentives, and subsidies. However, unchecked growth in the bioenergy industry has the potential to adversely influence land use, biodiversity, greenhouse gas (GHG) emissions, and water resources. It may have unintended environmental and socioeconomic consequences. Against this backdrop, it is important to develop standards and protocols that ensure sustainable bioenergy production, promote the benefits of biofuels, and avoid or minimize potential adverse outcomes.

Author(s):
Pralhad Burli , Pankaj Lal , Bernabas Wolde , Janaki Alavalapati

With the shift from petroleum-based to biomass-based economies, global biomass demand and trade is growing. This trend could become a threat to food security. Though rising concerns about sustainability aspects have led to the development of voluntary certification standards to ensure that biomass is sustainably produced, food security aspects are hardly addressed as practical criteria and indicators lack.

Author(s):
Anna Mohr , Tina Beuchelt , Rafaël Schneider , Detlef Virchow