Skip to main content

KDF Search Results

Displaying 1 - 7 of 7

Link to the website with documentation and download instructions for the PNNL Global Change Assessment Model (GCAM), a community model or long-term, global energy, agriculture, land use, and emissions. BioEnergy production, transformation, and use is an integral part of GCAM modeling and scenarios.

http://jgcri.github.io/gcam-doc/

Author(s):
Marshall Wise
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Social and economic indicators can be used to support design of sustainable energy systems. Indicators representing categories of social well-being, energy security, external trade, profitability, resource conservation, and social acceptability have not yet been measured in published sustainability assessments for commercial algal biofuel facilities.

Organization:
DOE
Author(s):
Rebecca A. Efroymson , Virginia H. Dale , Matthew H. Langholtz
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management.

Author(s):
R. A. Efroymson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Census of Agriculture, taken every five years, is a complete count of U.S. farms and ranches and the people who operate them. The Census looks at land use and ownership, operator characteristics, production practices, income and expenditures. For America’s farmers and ranchers, the Census of Agriculture is their voice, their future and their responsibility.

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

National biomass feedstock assessments (Perlack et al., 2005; DOE, 2011) have focused on cellulosic biomass resources, and have not included potential algal feedstocks. Recent research (Wigmosta et al., 2011) provides spatially-­‐explicit information on potential algal biomass and oil yields, water use, and facility locations. Oak Ridge National Laboratory and Pacific Northwest National Lab are collaborating to integrate terrestrial and algal feedstock resource assessments. This poster describes preliminary results of this research.

Author(s):
Matthew Langholtz
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This report, generally referred to as the Billion-Ton Study or 2005 BTS, is an estimate of “potential” biomass available within the contiguous United States based on assumptions about inventory production capacity, availability, and technology.

Author(s):
Robert D. Perlack
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The model is a vehicle fuel-cycle model for transportation systems. The model provides a set of outcomes that would involve feedstock production, biorefinery production, storage and consumer demand as the complete fuel-cycle. The data is internal to the model, but might be adaptive to different biofuels specifications. This model was developed by the Energy Systems Division at Argonne National Laboratory.

Author(s):
Michael Wang
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.