Skip to main content

KDF Search Results

Displaying 1 - 20 of 83

The biobased economy is playing an increasingly important role in the American economy.

Through innovations in renewable energies and the emergence of a new generation of biobased products, the sectors that drive the biobased economy are providing job creation and economic growth. To further understand and analyze trends in the biobased economy, this report compares 2011 and 2016 report data.

Organization:
USDA
Author(s):
Jay S. Golden , Robert Handfield , Janire Pascual-Gonzalez , Ben Agsten , Taylor Brennan , Lina Khan , Emily True

Social and economic indicators can be used to support design of sustainable energy systems. Indicators representing categories of social well-being, energy security, external trade, profitability, resource conservation, and social acceptability have not yet been measured in published sustainability assessments for commercial algal biofuel facilities.

Organization:
DOE
Author(s):
Rebecca A. Efroymson , Virginia H. Dale , Matthew H. Langholtz
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This project looks at the potential of blending ethanol with natural gasoline to produce Flex-Fuels (ASTM D5798-13a) and high-octane, mid-level ethanol blends. Eight natural gasoline samples were collected from pipeline companies or ethanol producers around the United States.

Author(s):
Teresa L. Alleman
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The objective of this work was to measure knock resistance metrics for ethanol-hydrocarbon blends with a primary focus on development of methods to  measure the heat of vaporization (HOV). Blends of ethanol at 10 to 50 volume percent were prepared with three gasoline blendstocks and a natural gasoline.

Author(s):
Gina M. Chupka
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

High-octane fuels (HOFs) such as mid-level ethanol blends can be leveraged to design vehicles with increased engine efficiency, but producing these fuels at refineries may be subject to energy efficiency penalties.  It has been questioned whether, on a well-to-wheels (WTW) basis, the use of HOFs in the vehicles designed for HOF has net greenhouse gas (GHG) emission benefits.

Author(s):
Jeongwoo Han
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

A framework for selecting and evaluating indicators of bioenergy sustainability is presented.
This framework is designed to facilitate decision-making about which indicators are useful for assessing
sustainability of bioenergy systems and supporting their deployment. Efforts to develop sustainability
indicators in the United States and Europe are reviewed. The fi rst steps of the framework for
indicator selection are defi ning the sustainability goals and other goals for a bioenergy project or program,

Author(s):
Virginia Dale
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

In order to aid operations that promote sustainability goals, researchers and stakeholders use sustainability assessments.  Although assessments take various forms, many utilize diverse sets of indicators numbering anywhere from two to over 2000. Indices, composite indicators, or aggregate values are used to simplify high dimensional and complex data sets and to clarify assessment results. Although the choice of aggregation function is a key component in the development of the assessment, there are fewliterature examples to guide appropriate

Author(s):
Nathan Pollesch
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The database summarizes a very broad set of old and new standing biomass data from plantation-grown hardwoods and softwoods established under a wide range of conditions across the United States and Canada. The WCYP database, together with this document, is being published to disseminate information on what is available in the literature with respect to yield evaluations and to inform people that not all yield data in the open literature are suitable for evaluation of “potential” regional yields.

Author(s):
Lynn Wright

This paper describes the current Biomass Scenario Model (BSM) as of August 2013, a system dynamics model developed under the support of the U.S. Department of Energy (DOE). The model is the result of a multi-year project at the National Renewable Energy Laboratory (NREL). It is a tool designed to better understand biofuels policy as it impacts the development of the supply chain for biofuels in the United States.

Author(s):
Peterson, Steve

A woody crop yield potential (WCYP) database was created containing yield results with as much associated information as was available concerning the sites, soils, and experimental treatments. The database summarizes a very broad set of old and new standing biomass data from plantation-grown hardwoods and softwoods established under a wide range of conditions across the United States and Canada.

Author(s):
Lynn Wright

Eucalyptus is a fast-growing tree native to Australia and could be used to supply biomass for bioenergy and other purposes along the coastal regions of the southeastern United States (USA). At a farmgate price of $66 dry Mg−1, a potential supply of 27 to 41.3 million dry Mg year−1 of Eucalyptus could be produced on about 1.75 million ha in the southeastern USA. A proposed suite of indicators provides a practical and consistent way to measure the sustainability of a particular situation where Eucalyptus might be grown as a feedstock for conversion to bioenergy.

Author(s):
Dale, Virginia , Matthew H. Langholtz , Beau M. Wesh , Laurence M. Eaton

Agricultural sustainability considers the effects of farm activities on social, economic, and environmental conditions at local and regional scales. Adoption of more sustainable agricultural practices entails defining sustainability, developing easily measured indicators of sustainability, moving toward integrated agricultural systems, and offering incentives or imposing regulations to affect farmer behavior.

Author(s):
Virginia H. Dale , Keith L. Kline , Stephen R. Kaffka , J. W. A. (Hans) Langeveld

Nationwide spatial dataset representing the polygon areas for first-generation suitability analysis of potentially suitable areas for microalgae open ponds. The PNNL microalgae growth model results for each site are included in the attribute table and assume growth based on theoretical limits. Sites represent a minimum mapping unit of 490 hectares. Land suitability included area less than or equal to 1% slope on non-agricultural, undeveloped or low‐density developed, nonsensitive, generally noncompetitive land was considered for microalgal culture facilities.

Microalgae are receiving increased global attention as a potential sustainable “energy crop”for biofuel production. An important step to realizing the potential of algae is quantifying the demands commercial‐scale algal biofuel production will place on water and land resources. We present a high‐resolution spatiotemporal assessment that brings to bear fundamental questions of where production can occur, how many land and water resources are required, and how much energy is produced.

Author(s):
Wigmosta, Mark

Indicators are needed to assess environmental sustainability of bioenergy systems. Effective indicators
will help in the quantification of benefits and costs of bioenergy options and resource uses. We identify
19 measurable indicators for soil quality, water quality and quantity, greenhouse gases, biodiversity, air
quality, and productivity, building on existing knowledge and on national and international programs
that are seeking ways to assess sustainable bioenergy. Together, this suite of indicators is hypothesized

Author(s):
McBride, Allen

Landscape implications of bioenergy feedstock choices are significant and depend on land-use practices and their environmental impacts. Although land-use changes and carbon emissions associated with bioenergy feedstock production are dynamic and complicated, lignocellulosic feedstocks may offer opportunities that enhance sustainability when compared to other transportation fuel alternatives.

Author(s):
Virginia H. Dale

Adding bioenergy to the U.S. energy portfolio requires long‐term profitability for bioenergy producers and
long‐term protection of affected ecosystems. In this study, we present steps along the path toward evaluating both sides of
the sustainability equation (production and environmental) for switchgrass (Panicum virgatum) using the Soil and Water
Assessment Tool (SWAT). We modeled production of switchgrass and river flow using SWAT for current landscapes at a

Relationships between people and their environment are largely defined by land use. Space and soil are needed for native plants and wildlife, as well as for crops used for food, feed, fiber, wood products and biofuel (liquid fuel derived from plant material). People also use land for homes, schools, jobs, transportation, mining and recreation. Social and economic forces influence the allocation of land to various uses.

Author(s):
Virginia Dale

Country borders have been chosen as system boundaries to inventory GHG emissions under the Kyoto Protocol. The use of country boundaries is clear and allows summing over all countries. The country inventories purposefully account for where and when both fossil-fuel combustion emissions occur, and changes in the biological stocks of carbon occur. The approach can be widely adopted, but this accounting is hampered by uncertain data (1, 2) and two basic shortcomings: Not all countries are required to report, and not all biological carbon stocks are inventoried.

Author(s):
Kline, Keith

A broad-scale perspective on the nexus between climate change, land use, and energy requires consideration of interactions that were often omitted from climate change studies. While prior analyses have considered how climate change affects land use and vice versa (Dale 1997), there is growing awareness of the need to include energy within the analytical framework. A broad-scale perspective entails examining patterns and process at divers spatial and temporal resolutions.

Author(s):
Virginia H. Dale