Skip to main content

carbon sequestration

Net benefits of bioenergy crops, including maize and perennial grasses such as switchgrass, are a function of several factors including the soil organic carbon (SOC) sequestered by these crops. Life cycle assessments (LCA) for bioenergy crops have been conducted using models in which SOC information is usually from the top 30 to 40 cm. Information on the effects of crop management practices on SOC has been limited so LCA models have largely not included any management practice effects. In the first 9 years of a long-term C sequestration study in eastern Nebraska, USA, switchgrass and maize with best management practices had average annual increases in SOC per hectare that exceed 2 Mg C year−1 (7.3 Mg CO2 year−1) for the 0 to 150 soil depth. For both switchgrass and maize, over 50 % of the increase in SOC was below the 30 cm depth. SOC sequestration by switchgrass was twofold to fourfold greater than that used in models to date which also assumed no SOC sequestration by maize. The results indicate that N fertilizer rates and harvest management regimes can affect the magnitude of SOC sequestration. The use of uniform soil C effects for bioenergy crops from sampling depths of 30 to 40 cm across agro-ecoregions for large scale LCA is questionable.

Publication Date
DOI
10.1007/s12155-012-9198-y
Bioenergy Category
Author(s)
Ronald F. Follett , Kenneth P. Vogel , Gary E. Varvel , Robert B. Mitchell , John Kimble

Landscape implications of bioenergy feedstock choices are significant and depend on land-use practices and their environmental impacts. Although land-use changes and carbon emissions associated with bioenergy feedstock production are dynamic and complicated, lignocellulosic feedstocks may offer opportunities that enhance sustainability when compared to other transportation fuel alternatives. For bioenergy sustainability, major drivers and concerns revolve around energy security, food production, land productivity, soil carbon and erosion, greenhouse gas emissions, biodiversity, air quality, and water quantity and quality. The many implications of bioenergy feedstock choices require several indicators at multiple scales to provide a more complete accounting of effects. Ultimately, the long-term sustainability of bioenergy feedstock resources (as well as food supplies) throughout the world depends on land-use practices and landscape dynamics. Land-management decisions often invoke trade-offs among potential environmental effects and social and economic factors as well as future opportunities for resource use. The hypothesis being addressed in this paper is that sustainability of bioenergy feedstock production can be achieved via appropriately designed crop residue and perennial lignocellulosic systems. We find that decision makers need scientific advancements and adequate data that both provide quantitative and qualitative measures of the effects of bioenergy feedstock choices at different spatial and temporal scales and allow fair comparisons among available options for renewable liquid fuels.

Contact Phone
Publication Date
Contact Email
dalevh@ornl.gov
Contact Person
Virginia Dale
Contact Organization
Center for BioEnergy Sustainability, Oak Ridge National Laboratory
Bioenergy Category
Author(s)
Virginia H. Dale

This review on research on life cycle carbon accounting examines the complexities in accounting for carbon emissions given the many different ways that wood is used. Recent objectives to increase the use of renewable fuels have raised policy questions, with respect to the sustainability of managing our forests as well as the impacts of how best to use wood from our forests. There has been general support for the benefits of sustainably managing forests for carbon mitigation as expressed by the Intergovernmental Panel on Climate Change in 2007. However, there are many integrated carbon pools involved, which have led to conflicting implications for best practices and policy. In particular, sustainable management of forests for products produces substantially different impacts than a focus on a single stand or on specific carbon pools with each contributing to different policy implications. In this article, we review many recent research findings on carbon impacts across all stages of processing from cradle-to-grave, based on life cycle accounting, which is necessary to understand the carbon interactions across many different carbon pools. The focus is on where findings are robust and where uncertainties may be large enough to question key assumptions that impact carbon in the forest and its many uses. Many opportunities for reducing carbon emissions are identified along with unintended consequences of proposed policies.
http://www.corrim.org/pubs/articles/2011/FSG_Review_Carbon_Synthesis.pdf
 

Contact Phone
Publication Date
Contact Email
blippke@u.washington.edu
Data Source
http://www.corrim.org/pubs/articles/2011/FSG_Review_Carbon_Synthesis.pdf
Contact Person
Bruce Lippke
Contact Organization
College of Environment, University of Washington
Bioenergy Category
Author(s)
Lippke, Bruce

Recent legislative mandates have been enacted at state and federal levels with the purpose of reducing life cycle greenhouse gas (GHG) emissions from transportation fuels. This legislation encourages the substitution of fossil fuels with ‘low-carbon’ fuels. The burden is put on regulatory agencies to determine the GHG-intensity of various fuels, and those agencies naturally look to science for guidance. Even though much progress has been made in determining the direct life cycle emissions from the production of biofuels, the science underpinning the estimation of potentially signifi cant emissions from indirect land use change (ILUC) is in its infancy. As legislation requires inclusion of ILUC emissions in the biofuel life cycle, regulators are in a quandary over accurate implementation. In this article, we review these circumstances and offer some suggestions for how to proceed with the science of indirect effects and regulation in the face of uncertain science. Besides investigating indirect deforestation and grassland conversion alone, a more comprehensive assessment of the total GHG emissions implications of substituting biofuels for petroleum needs to be completed before indirect effects can be accurately determined. This review fi nds that indirect emissions from livestock and military security are particularly important, and deserve further research. © 2009 Society of Chemical Industry and John Wiley & Sons, Ltd

Bioenergy Category
Subscribe to carbon sequestration