Skip to main content

Energy security

There is an inextricable link between energy production and food/feed/fiber cultivation with available water resources. Currently in the United States, agriculture represents the largest sector of consumptivewater usemaking up 80.7%of the total. Electricity generation in the U.S. is projected to increase by 24 % in the next two decades and globally, the production of liquid transportation fuels are forecasted to triple over the next 25-years, having significant impacts on the import/export market and global economies. The tension between local water supply and demand across water use sectors needs to be evaluated with regards to risk evaluation and planning. To this end, we present a systematic method to spatially and temporally disaggregate nationally available 5-year county-scalewater use data to amonthly 1/8° scale.Our study suggests that while 81.9 % of the U.S. exhibits unstressed local conditions at the annual scale, 13.7 % is considered water scarce; this value increases to 17.3 % in the summer months. The use of mean annualwater scarcity at a coarser basin scale (~373,000 ha)was found to mask information critical for water planning whereas finer spatiotemporal scales revealed local areas that are water stressed or water scarce. Nationally, ~1%of these Bunstressed^ basins actually contained water stressed or water scarce areas equivalent to at least 30 % and 17 %, respectively, of the basin area. These percentages increase to 34 % and 48 % in the summer months. Additionally, 15 % of basins classified as "unstressed" contained water scarce areas in excess of 10 % during the summer.

Contact Phone
Publication Year
Project Title
Biofuel Production Under Climate Change
Contact Email
Andre.Coleman@pnnl.gov
Contact Person
Andre Coleman
Contact Organization
Pacific Northwest National Laboratory
Bioenergy Category
Author(s)
Brandon C. Moore
WBS Project Number
11.1.1.6
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Indicators are needed to assess both socioeconomic and environmental sustainability of bioenergy systems. Effective indicators can help to identify and quantify the sustainability attributes of bioenergy options. We identify 16 socioeconomic indicators that fall into the categories of social well-being, energy security, trade, profitability, resource conservation, and social acceptability. The suite of indicators is predicated on the existence of basic institutional frameworks to provide governance, legal, regulatory and enforcement services. Indicators were selected to be practical, sensitive to stresses, unambiguous, anticipatory, predictive, estimable with known variability, and sufficient when considered collectively. The utility of each indicator, methods for its measurement, and applications appropriate for the context of particular bioenergy systems are described along with future research needs. Together, this suite of indicators is hypothesized to reflect major socioeconomic effects of the full supply chain for bioenergy, including feedstock production and logistics, conversion to biofuels, biofuel logistics and biofuel end uses. Ten indicators are highlighted as a minimum set of practical measures of socioeconomic aspects of bioenergy sustainability. Coupled with locally prioritized environmental indicators, we propose that these socioeconomic indicators can provide a basis to quantify and evaluate sustainability of bioenergy systems across many regions in which they will be deployed.

Publication Year
Contact Email
dalevh@ornl.gov
Contact Person
Virginia Dale
Contact Organization
Oak Ridge National Laboratory
Bioenergy Category
Author(s)
Virginia H. Dale
Subscribe to Energy security