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A B S T R A C T

One approach to assessing progress towards sustainability makes use of multiple indicators spanning the
environmental, social, and economic dimensions of the system being studied. Diverse indicators have dif-
ferent units of measurement, and normalization is the procedure employed to transform differing indicator
measures onto similar scales or to unit-free measures. Given the inherent complexity entailed in interpret-
ing information related to multiple indicators, normalization and aggregation of sustainability indicators
are common steps after indicator measures are quantified. However, it is often difficult for stakeholders
to make clear connections between specific indicator measurements and resulting aggregate scores of sus-
tainability. Motivated by challenges and examples in sustainability assessment, this paper explores various
normalization schemes including ratio normalization, target normalization, Z-score normalization, and unit
equivalence normalization. Methods for analyzing the impacts of normalization choice on aggregate scores
are presented. Techniques are derived for general application in studying composite indicators, and advan-
tages and drawbacks associated with different normalization schemes are discussed within the context of
sustainability assessment. Theoretical results are clarified through a case study using data from indicators
of progress towards bioenergy sustainability.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Sustainability is an inherently complex topic with different mean-
ings pertaining to different contexts. Indicators of progress toward
sustainability are measures that characterize conditions under which
resource uses are more sustainable and are often tracked over time or
compared for alternative practices. A variety of indicators of progress
toward sustainability have been identified and both the breadth as
well the number of indicators used for each assessment varies by
application (Dale et al., 2013; Mori and Christodoulou, 2012; McBride
et al., 2011; Singh et al., 2009; Mayer, 2008). Indicators typically
involve social, economic and environmental measures in order to
capture the three major aspects of sustainability.

Sustainability assessments often rely on a variety of indicators.
Different indicators are measured and reported in units pertinent to
the particular metric. Having a common unit of measure is useful
for comparison and synthesis of indicators. The synthesis of indica-
tors can be done analytically, statistically, or graphically. Combining
of measurements of multiple indicators to produce sustainability
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scores, composite indices, or aggregates is done to reduce dimen-
sionality and can provide a single holistic value. Industry reports and
national inventories are typically based on these highly aggregated
data (Heijungs et al., 2007; Bare et al., 2006).

Normalization is the process of transforming units of measure-
ment from the original units to common measurement units or to
measurements that are unit less. This process is also referred to as
unit scaling or standardization, with terminology varying based on
the functions utilized in the process and by discipline. For clarity,
this paper uses the term normalization to refer to all such processes
transforming diverse units to common or unit-less quantities. When
indicator units vary, normalization is seen as a necessary step prior
to aggregation (Nardo et al., 2005). Mathematical research into the
structure of sustainability assessments has focused on the aggrega-
tion step (Pollesch and Dale, 2015; Langhans et al., 2014; Roberts,
2014; Zhou et al., 2006; Ebert and Welsch, 2004). Freudenberg (2003)
gives a comparison of two different normalization procedures on
a composite assessment outcome. Although researchers are often
aware of the effect that a given choice of normalization scheme has
on assessment outcome, no formal analysis of the implications of the
normalization procedure on assessment outcome has emerged in the
sustainability assessment literature.

In this paper the consequences of using different normal-
ization functions within an aggregate score of sustainability are

http://dx.doi.org/10.1016/j.ecolecon.2016.06.018
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explored. The normalization and subsequent aggregation process
used to derive composite sustainability scores vary greatly (Mori
and Christodoulou, 2012; Singh et al., 2009; Mayer, 2008). Moldan
et al. (2012) observe that for sustainability assessment “the selec-
tion and definition of pertinent indicators, to a large extent, defines
the whole issue.” Indicator selection may define the “whole issue,”
yet how measurements of those indicators are interpreted depends
critically on the assessment structure. Even a well-defined set of indi-
cators and accompanying high quality data can lead to completely
different assessments of a system depending on the normalization
and aggregation procedure employed. A recent example illustrating
how something as arbitrary as the order in which indicators appear
on a spider diagram can have large effect on sustainability ratings
as calculated through surface area is given in Dias and Domingues
(2014).

After terminology is established, this paper provides examples of
normalization methods in sustainability assessment to show vari-
ety and form. Next, we move to an in-depth look at four common
normalization procedures in combination with different aggregation
functions to elucidate exact dependencies between aggregate sus-
tainability scores and the normalization schemes utilized in their cal-
culation. Through a case study of composite scores of bioenergy sus-
tainability, the question of how changes in non-normalized indicator
measures impact aggregate scores of sustainability is addressed. The
paper concludes with the discussion of advantages and drawbacks
for normalization schemes, reinforced by results derived in the case
study provided.

2. Normalization Methods

The normalization process is used throughout scientific research
and is motivated by a variety of circumstances. In sustainability
assessment, the major motivation for normalization is to transform
measurements of indicators, typically obtained in different units, to a
common unit of measurement to compare them or to prepare them
for inclusion in an aggregate score of sustainability.

2.1. Terminology and Notation

There are a wide variety of functions that can be applied to data
in order to normalize. To aid in the discussion and analysis of these
different normalization procedures and functions, the underlying
terminology is established below.

• Indicator bearing: Sustainability indicators can differ as to
whether smaller or larger values of the indicators are inter-
preted as being ideal1 or if there is some ideal value from
which the measure should not differ in magnitude too much.
In this paper we use the term indicator bearing to describe
this attribute of indicators. Indicator bearings are referenced
through a variety of terminology in the literature, for example
“direct correlation with utility” and “inverse correlation with
utility” (Maxim, 2014). Krajnc and Glavič (2005) use “positive
impact” or “negative impact,” and Dias and Domingues (2014)
use “criteria is to maximize” or “criteria is to minimize.” In
this paper, the terms larger-the-better (LTB), smaller-the-better
(STB), and distance-to-ideal (DTI) are used given their straight-
forward meaning. It should be noted that these are not the only
types of indicator bearings for normalization and that some
normalization strategies, such as unit equivalence normalization
(Table 1), do not discriminate indicators in these regards.

1 The term ideal can be interpreted in a variety of ways. Frequently, analysis goals
and assessment context guide the interpretation as to what is considered an ideal and,
correspondingly, a non-ideal or baseline measurement value.

• Normalization schemes: Since each assessment may include
indicators that are of many bearing types, families of nor-
malization functions are used to take these differences into
account. For example, if target normalization (Table 1) is
employed, the form of the function applied differs by indicator
bearing types. Families, or groups, of normalization functions
are referred to here as normalization schemes. In the case where
the normalization procedure does not discriminate among
indicator bearing types, the scheme may consist of just a single
function; Z-score normalization (Table 1) is an example.

• Internal normalization: Another differentiating factor between
normalization functions occurs if they use the entire data set
for a given indicator to normalize a single measurement of
that indicator. These normalization functions are referred to as
internal2. Examples of this type of normalization function are
ratio normalization functions for STB and LTB type indicators
(Table 1). Normalization functions that are not internal depend
on predefined, exogenous values, such as target and baseline
levels or unit conversion factors.

• Notation for normalized and non-normalized indicator mea-
surements also varies. In this paper, non-normalized measures
are denoted by a superscript ‘∗’. Subscripts are used to convey
a variety of information, such as which indicator is being con-
sidered and/or which measurement of that indicator is being
referenced. For example, if measurement j of indicator i is nor-
malized, the notation for the normalized measure would be xij

and the non-normalized measure would be x∗
ij. For consistency

and clarity, examples referenced in this paper are translated
into this notation when possible.

2.2. Examples of Normalization in Sustainability Assessment

A plethora of normalization functions are utilized in sustainability
assessment. Examples given next provide a glimpse into the variety
and form.

Krajnc and Glavič (2005) propose two different normalization
schemes, the second of which is employed in the Sustainable
Development Index. The first scheme normalizes measurements rela-
tive to the average of the indicator measures (in this case a total of T
measures have been taken over time) so that

xi =
x∗

i
1
T

∑T
j=1 x∗

j

The second scheme is given by

xi =
x∗

i − minj

{
x∗

j

}
maxj

{
x∗

j

}
− minj

{
x∗

j

} and xi = 1 −
x∗

i − minj

{
x∗

j

}
maxj

{
x∗

j

}
− minj

{
x∗

j

}

for larger-the-better and smaller-the-better type indicators, respec-
tively. All the normalization functions from Krajnc and Glavič (2005)
given above are internal.

In the Holistic Sustainability Assessment Tool for Bioenergy of
Hayashi et al. (2014), the indicator measures are normalized by

xi =

⎧⎨
⎩

(x∗
i −Ti)

(xmaxi −Ti)
x∗

i > Ti

(x∗
i −Ti)
(Ti)

x∗
i ≤ Ti

and xi =

⎧⎨
⎩

(x∗
i −Ti)

(xmaxi −Ti)
x∗

i > Ti

(x∗
i −Ti)
(Ti)

x∗
i ≤ Ti

2 The term internal, with respect to a normalization function, is used to identify
those functions that utilize the entire data set for an indicator to normalize any given
measurement value from the set. This term is not to be confused with the internality
of an aggregation function, which describes the aggregation function’s compensatory
behavior (see Pollesch and Dale (2015) or Grabisch et al. (2009) for a formal definition).
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Table 1
Common normalization function definitions and notations: internal normalization functions, those for which the normalized value of xj depends on the entire data set x∗ , and the
normalization functions that create dimensionless quantities are identified.

Scheme, notation, and definition Indicator bearing Internal Dimensionless

Ratio normalization

RL,j(x∗) =
x∗

j
max{x∗} LTB � �

RS,j(x∗) = min{x∗}
x∗

j
STB � �

RD,j

(
x∗

j , T
)

=
min

{
x∗

j ,T
}

max
{

x∗
j ,T

} DTI �

Z-score normalization

Zj(x∗) =
x∗

j −x̄∗

SN (x∗) n/a � �

where x̄∗ = 1
n

∑n
j=1 x∗

j , SN =
(

1
n

∑n
j=1

(
x∗

j − x̄∗
)2

)1/2

Unit equivalence

Cj

(
x∗

j , cf

)
= x∗

j cf n/a

where cf is a conversion factor from x∗
j ’s to desired units

Target normalization to interval [0, 1]

TL,j

(
x∗

j , T, B
)

=

⎧⎪⎪⎨
⎪⎪⎩

0, x∗
j ≤ B

1 − T−x∗
j

T−B , B < x∗
j < T

1, x∗
j ≥ T

LTB �

TS,j

(
x∗

j , T, B
)

=

⎧⎪⎪⎨
⎪⎪⎩

1, x∗
j ≤ T

1 − x∗
j −T

B−T , T < x∗
j < B

0, x∗
j ≥ B

STB �

TD,j

(
x∗

j , T, Bl , Bu

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − T−x∗
j

T−Bl
, Bl < x∗

j < T
1, x∗

j = T

1 − x∗
j −T

Bu−T , T < x∗
j < Bu

0, else

DTI �

Note: LTB: larger-the-better, STB: smaller-the-better, DTI: distance-to-ideal, x∗ =
{
x∗

1, x∗
2, ..., x∗

n
}
, T is a target or ideal value for a given indicator, B is a baseline or non-ideal value

for a given indicator (Bl and Bu used when an upper and lower baseline are required), x̄∗ is the sample mean, SN is the sample standard deviation, and Cf is a conversion factor to
change units of x∗ to alternate units (ex. dollars or greenhouse gas equivalents).

for larger-the-better and smaller-the-better indicators, respectively.
The authors state that xmaxi is determined either by historical data or
legislation and Ti is a threshold value. These functions score indicator
measures from −1 to 1, with −1 being the least sustainable and 1
being the most sustainable. The score is 0 when the indicator is the
same measure as the threshold value, Ti. This scheme can be internal
or not depending on how xmaxi is defined.

Maxim (2014) uses the following functions for the sustainability
assessment of electricity generation technology:

xi =
x∗

i − minj{x∗
j }

maxj{x∗
j } − minj{x∗

j }
and xi =

minj{x∗
j } − x∗

i

maxj{x∗
j } − minj{x∗

j }

for larger-the-better and smaller-the-better indicators, respectively.
Thus, normalized values fall into the interval [0, 1]. This is another
example of an internal normalization scheme.

Castoldi and Bechini (2010) use a set of normalization functions
in their construction of an integrated sustainability assessment of
cropping systems. Normalization is carried out by use of continuous
simple functions such that xi = 1 if x∗

i is within some range of
sustainability optimality thresholds; xi takes on values (0, 1) for x∗

i
measures between optimal and anti-ideal thresholds and takes on
the value of 0 outside of the anti-ideal thresholds. This may be seen
as a generalization on the distance to ideal normalization function
within the target normalization scheme. This normalization scheme
is not internal and depends on predefined optimal thresholds for
indicators.

Sadamichi et al. (2012) convert all measures to greenhouse gas
equivalents in their sustainability assessment of biomass utiliza-
tion for energy in east Asian countries. Transformation of indica-
tor measures to a different and common unit of measurement for
comparison can also take place by transforming to monetary units,
such as dollars, or embodied energy units, such as emJoules, see
Odum et al. (2000) for example, and falls broadly under the normal-
ization scheme that is referred to in this paper as unit-equivalence
normalization.

The normalization method utilized in Pinar et al. (2014) for the
FEEM (Fondazione Eni Enrico Mattei) Sustainability Index is termed
benchmarking. A benchmarking function is defined that assigns a nor-
malized value to each indicator based on its level of sustainability,
determined by “reliable and authoritative literature and interna-
tional legislation sources.” Specifically, Pinar et al. (2014) use the
function given in Table 2. The benchmarking normalization function
is not an internal normalization function, as it depends on indica-
tor values each being mapped to some value based on a qualitative
valuation of their level of sustainability.

Table 2
Benchmarking normalization function from Pinar et al. (2014). Indicators are normal-
ized to values between 0 and 1 based on expert judgments of their sustainability
level.

Normalized value Sustainability level

0 Extremely unsustainable
0.25 Still not sustainable but not as severely as in the previous case
0.50 Discrete level of sustainability, but still far from target
0.75 Satisfactory level of sustainability, yet not on target
1 Fully sustainable
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A variety of normalization procedures are employed in sustain-
ability assessment, each of which has its own properties and unique
impact on any aggregate measure of sustainability derived from the
normalized measures. Although it is not within the scope of this
paper to fully analyze the normalization functions provided above,
the analysis and case study included in this paper sheds light on
some of the behavior of common normalization procedures encoun-
tered, namely ratio normalization and target normalization to the
interval [0,1]. The examples in the case study provide background
for describing the ways in which normalization functions can be
analyzed to understand important properties of their behavior.

2.2.1. Ratio and Target Normalization Schemes
Given that ratio normalization and target normalization to the

interval [0,1] are used for analysis in this paper, a brief discussion of
these two schemes is useful. Ratio normalization is named as such
because measures are transformed by taking the ratio of individual
measurements to extremal measurements (minimum or maximum)
of the data set. When indicators are of smaller-the-better type, the
minimum value from the data set is used to transform all other mea-
surements, and hence the minimum value normalizes to a value of 1.
For larger-the-better type indicators, it is the maximum value that is
used to transform all other measurements, and the maximum value
normalizes to a value of 1. The smaller-the-better and larger-the-
better normalization functions are internal, so normalized values do
not have meaning relative to exogenous system-defined targets or
baselines. Also, for indicators with these bearings, the normalized
value’s significance comes from their relation only to the extremal
elements from the data set in which they belong.

Target normalization compares individual measurements to pre-
defined baseline and target values. These values can be system
specific and tied to the environmental or socioeconomic sensitivi-
ties of the system being studied. They can also be uniform values,
such as those provided by government regulations in the case of
baselines, that may apply to multiple systems included in the study.
Arguments for linking sustainability assessment outcomes to target
or ideal levels, which is what target normalization accomplishes, can
be found in the work of Moldan et al. (2012), Stiglitz et al. (2009)
and Mayer (2008). Moldan et al. (2012) argues that “The benefit of
specific, quantitative, time bound targets is then straightforward:
The indicators can be linked to them and interpreted clearly on a
distance-to-target basis.” Mayer (2008) states that “ indicators are
more helpful if they give information on the state of the system with
respect to policy targets or biophysical limits.” Unlike ratio normal-
ization, extremal elements in a data set do not influence normalized
values when target normalization is used.

Beyond advocating for the inclusion of targets and baselines in
sustainability, there is some discussion about how to determine
and assign specific target and baseline values. Moldan et al. (2012)
discusses ways in which target levels can be defined for sustainabil-
ity indicators and provides example resources for their definition.
Specifically, that study cites EEAiS: Star Portal Smeets et al. (1999),
Millennium Development Goals, Eurostat, and Organisation for Eco-
nomic and Co-Operation and Development (OECD) as potential
resources for target references (Smeets et al., 1999; Eurostat, 2009;
Nations, 2010; OECD, 2003). Further discussion and comparison of
these normalization methods are provided throughout this paper.

3. Analyzing Normalization Functions

Studying the mathematical structure of the normalization func-
tions provides insights into the implications that a given choice of
normalization scheme may have on sustainability assessment out-
comes. The four normalization schemes that are considered in this
paper are ratio normalization, Z-score normalization, unit equivalence
normalization, and target normalization to the interval [0,1] (Table 1).

This paper analyzes how changes in the original, non-normalized
data for a given indicator can cascade to alter composite sus-
tainability scores. This investigation has implications for, not only
the sensitivity of aggregate outcomes based on the normalization
scheme chosen, but also the implicit weight or impact that a given
normalization scheme has on particular measures of indicators. The
comparability of assessment results based on the normalization
procedure employed is also discussed.

3.1. Internal Normalization

Whether a normalization function is internal or not can have a
large impact on how changes in non-normalized values can affect the
total aggregate outcome. This effect occurs because each normalized
indicator measurement depends on the full data set for that indica-
tor. Internal normalization functions from literature were identified
in the previous section. Of the four normalization schemes defined
in Table 1, Z-score normalization is an internal normalization func-
tion; and unit equivalence normalization and target normalization
to interval [0,1] are not. Within the ratio normalization scheme, the
larger-the-better and smaller-the-better normalization functions are
internal, while the distance-to-ideal function is not internal; hence
internality is not necessarily a property of the normalization scheme
but rather of individual normalization functions. In the case of ratio
normalization functions, the use of min{x∗} and max{x∗} cause them
to be internal, while Z-score normalization is internal from both the
explicit use of the mean value, x̄∗, and the calculation of the standard
deviation, SN . The case study provided in Section 5 motivates the
importance of knowing if a normalization function is internal or not.

Table 3
Normalization function derivatives: using functions defined in Table 1, change in
normalized value with respect to a change in the data point, x∗

j , is presented.

Change in normalized value with respect to change in x∗
j

Ratio normalization

∂
∂x∗

j
(RL,j(x∗)) =

{
1

max{x∗} , x∗
j < x∗

k∀k �= j

0, else

∂
∂x∗

j
(RS,j(x∗)) =

⎧⎪⎨
⎪⎩

− min{x∗}(
x∗

j

)2 , x∗
j < x∗

k∀k �= j

0, else

∂
∂x∗

j
(RD,j(x∗

j , T)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
T , x∗

j < T

0, x∗
j = T

−T(
x∗

j

)2 , x∗
j > T

Z-score normalization

∂
∂x∗

j
(Zj(x∗)) =

⎛
⎝(

1
n

∑n
j=1

(
x∗

j −x̄∗)2
) 1

2 (
1− 1

n

)⎞
⎠−

⎛
⎜⎜⎜⎝

n−1/2
(

x∗
j −x̄∗

)2

(∑n
j=1

(
x∗
j −x̄∗

)2
)1/2

⎞
⎟⎟⎟⎠

⎛
⎜⎝

∑
k�=j

(
x∗
k−x̄∗)

−n
(

x∗
j −x̄∗

) +
(

1− 1
n

)⎞
⎟⎠

1
n

∑n
j=1 (x∗

j −x̄∗)2

Unit equivalence normalization
∂

∂x∗
j

(C(x∗
j , cf )) = cf

Target normalization to interval [0,1]

∂
∂x∗

j
(TL,j(x∗

j , T, B)) =

{
1

T−B , B < x∗
j < T

0, else

∂
∂x∗

j
(TS,j(x∗

j , T, B)) =

{ −1
B−T , T < x∗

j < B

0, else

∂
∂x∗

j
(TD,j(x∗

j , T, Bl , Bu)) =

⎧⎪⎪⎨
⎪⎪⎩

1
T−Bl

, Bl < x∗
j < T

−1
Bu−T , T < x∗

j < Bu

0, else

Note: x∗ = {x∗
1, x∗

2, . . . , x∗
n}, T is a target or ideal value for a given indicator, B is a baseline

or non-ideal value for a given indicator (Bl and Bu used when an upper and lower

baseline are required), SN =
[

1
n

∑n
j=1 (xj − x̄)2

]1/2
is the sample standard deviation,

x̄∗ = 1
n

∑n
j=1 x∗

j is the sample mean, and cf is a conversion factor to change units of x∗

to alternate units, such as dollars or greenhouse gas equivalents.
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3.2. Derivatives of Normalization Functions

The goal of investigating changes in the output of some nor-
malization function naturally leads to the calculation and investi-
gation of the derivatives of the normalization functions. Table 3
presents derivatives of the functions included in the four normal-
ization schemes from Table 1 with respect to an arbitrary jth non-
normalized measurement, x∗

j . Two important properties considered
here are piecewise differentiability of the normalization functions
and how the derivative function depends on the variable being
differentiated.

Many of the normalization functions are piecewise-defined and
thus are differentiated piecewise. For ratio normalization functions,
the presence of the min{x} and max{x} have a particular influence
on the calculation of the derivative. Specifically, for RL,j(x∗), as long
as the non-normalized value being changed is not the maximum
of the data set, max{x}, and does not become the maximum of the
data set, the derivative is a constant value 1

max{x} . However, in the
case where the value changing is the maximum (or becomes the
maximum), the behavior is quite different. Thus a complete charac-
terization of the derivative must take these different possibilities into
account (see Section 6.1). Similarly, target normalization behavior
changes as measurements near the target and baselines values are
varied and surpass these thresholds. How normalized values change
near these threshold values and the impact of this behavior on aggre-
gate sustainability scores are shown in further detail in the example
included in Section 6.

In both internal and non-internal cases, how the variable of dif-
ferentiation x∗

j appears in the derivative function is important (see
Section 5.4). For example, the derivative of RS,j(x∗) has fundamentally
different behavior from nearly all other normalization functions con-
sidered due to the appearance of (x∗

j )2 in the derivative (see Table 3).
This difference leads to an impact on an aggregate score of sustain-
ability that varies depending both on the value that is changing and
the magnitude of the change, whereas the impact of normalization
functions whose derivatives do not contain an x∗

j term is proportional
to the change alone. An example of this effect is shown in the case
study and discussed further in Section 6 below.

3.3. Comparability and Normalization

Assessments are often created with the goal of comparing alter-
native scenarios, different systems, or the same system at different
points in time. The normalization scheme chosen has an affect on
the comparability of results. Internal normalization schemes trans-
form indicator measures based on the values present only in a
particular data set. For a very simple example, consider two sys-
tems that are to be assessed and compared through measurements
of a single, smaller-the-better type indicator. Let the first system
have values (2, 5, 6, 2, 10) and the second system have values (20,
50, 60, 20, 100) for the indicator measured. If ratio normalization is
used, these two very different data sets would normalize to equiv-
alent the measures (1/5, 1/3, 2/5, 1, 1). Z-score standardization in
this case behaves identically, since both data sets normalize to mea-
sures of (0, − 3√

11
, − 3√

11
, 1√

11
, 5√

11
). However, if these measures were

normalized using unit equivalence normalization, the order of mag-
nitude difference would be maintained. Depending on context and
the indicator being measured, the order of magnitude difference
showing up in normalized values may or may not be a necessary
or desirable trait. For target normalization, the transformed values
for an indicator depend not only on the individual measurement
but also on targets and/or baseline(s) defined. If the same targets
and baselines were used for both systems, the results would be dis-
tinguishable. Dependence, in both cases, of normalized values on
targets and baselines leads to questions of comparability.

4. Normalization and Aggregate Measures of Sustainability

Thus far we have defined terminology, presented examples of
common normalization functions, and shown a sample of the variety
of these functions that can be found in the sustainability assess-
ment literature. We have also provided derivatives of the functions
included in four normalization schemes and defined relevant prop-
erties that can be used to classify types and behaviors of these nor-
malization functions. Consideration now moves to how a change in
a non-normalized value impacts an aggregate score of sustainability
given a choice of normalization scheme and aggregation function(s).
To carry out this analysis, its helps to place the normalization process
into a context relevant to sustainability assessment.

Interpretation of composite sustainability scores is predicated by
an understanding of the differential impacts of indicators. Langhans
et al. (2014) present trade-off diagrams to show, for given aggrega-
tion functions and two indicators (each indicator represented by a
single measurement), how much an increase in one indicator needs
to be accompanied by an increase in the other indicator to have the
same impact on the composite score. Pinar et al. (2014) also provide
examples of how relative importance of indicators and interaction
among indicators can be computed within their FEEM Sustainability
Index.

In this paper, differential impacts, or sensitivities, of the aggregate
sustainability score to changes in non-normalized indicator mea-
surements are investigated by the use of derivative functions. Let S
denote an aggregate sustainability score, where S = A(x1, x2, . . . , xn)
for some aggregation function A. The change of the aggregate out-
put, S , with respect to a change in an indicator, xi, is investigated by
computing the partial derivative

∂

∂xi
(A(x1, x2, . . . , xn)) (1)

However, the partial derivative in Eq. (1) assumes that there is one
representative value for each indicator, xi. In practice, the xi values
are often the aggregate of multiple measurements, j, for a given indi-
cator, i. Adding in this detail, let xi = ai(xij), for some aggregation
function ai that combines the various measurements for indicator i.
Now we can ask how S is impacted by changes of individual indi-
cator measurements, xij. Calculating the change in S as an indicator
measurement, xij, changes leads to computing the partial derivative
by use of the chain rule

∂

∂xij
(A(a1(x1j),a2(x2j), . . . ,an(xnj))

= A′(a1(x1j),a2(x2j), . . . ,an(xnj))a′
i(xij) (2)

where the prime notation ‘ ′ ’ represents the partial derivative with
respect to xij. Again, this is equation is often not representing the full
picture because normalization is performed on individual indicator
measurements before aggregation. Let xij = fi(x∗

ij) be the output of
some normalization function, fi, for indicator i that is acting on the
raw indicator data, x∗

ij, where all raw data for a given indicator are
normalized using the same normalization function, fi. Thus, for a full
treatment of how S is impacted by changes in non-normalized indi-
cator data, we need to add this final detail to our derivatives. This
leads to the following:

∂

∂x∗
ij

(A(a1(f1(x∗
1j)),a2(f2(x∗

2j)), . . . ,an(fn(x∗
nj)))

= A′(a1(f1(x∗
1j)),a2(f2(x∗

2j)), . . . ,an(fn(x∗
nj)))a

′
i(fi(x∗

ij))f
′
i (x∗

ij) (3)

In this case, the prime notation ‘ ′ ’ represents the partial derivative
with respect to x∗

ij. Eq. (3) is calculated to determine the impact of a
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Table 4
Arithmetic and geometric mean definitions and derivatives: for the arithmetic mean
(AM), geometric mean (GM), weighted arithmetic mean (WAM), and weighted geo-
metric mean (WGM) a change in aggregate value with respect to a change in an input
component, xi , is presented.

A(x) : aggregation function ∂
∂xi

(A(x))

Arithmetic means
AM(x) = 1

n

∑n
i=1 xi

∂
∂xi

(AM(x)) = 1
n

WAM(x, w) =
∑n

i=1 wixi
∂

∂xi
(WAM(x, w)) = wi

Geometric means
GM(x) =

∏n
i=1 (xi)1/n ∂

∂xi
(GM(x)) = 1

n (
∏

j�=ixj)(
∏n

i=1 xi)1/n−1

WGM(x, w) =
∏n

i=1(xwi
i ) ∂

∂xi
(WGM(x, w)) = wix

wi−1
i

∏
j�=i(x

wj
j )

Note: x = {x1, x2. . . , xn} and w = {w1, w2. . . , wn} where 0 ≤ wi < 1 and
∑n

i=1 wi = 1.

variable, in this case a raw data measurement x∗
ij, that has been acted

on by a normalization and aggregation function, fi and ai, respec-
tively, before being acted on by A to determine the final output for
S . Although Eq. (3) is beginning to look like a bit of a monster, if the
aggregation functions A and ai are those of common employ, such
as the weighted or unweighted arithmetic or geometric mean, the
derivatives are quite straightforward (see Table 4). The derivative in
Eq. (3) serves as the road map for the analysis that takes place in the
case study that follows.

A summary of how raw data are transformed is as follows: First
raw data, x∗

ij, for indicators are normalized using fi, then normalized
data, xij, are aggregated for each indicator using ai, and finally mul-
tiple indicator aggregates, xi, are combined using some aggregation
function A to derive a sustainability score S . Fig. 1 summarizes this
procedure and presents a flowchart that describes the process. Fig. 1
also identifies examples of relevant properties and parameters for

consideration at each step as measurements move from raw data, x∗
ij,

to a sustainability score, S .

5. Case Study

The following case study is presented to link the varying proper-
ties of normalization functions discussed in Section 3 to behaviors in
example aggregate scores of sustainability. The sustainability assess-
ment structure outlined in Fig. 1 is followed. This application uses
Eq. (3) to understand how changes in raw data impact a sustain-
ability score, S , under eight different scenarios. In this case each
scenario is a choice of a normalization scheme, which determine
functions fi, and the choice of an aggregation function A, that is used
to compute S from the combined normalized indicator measures.
The scenarios included in the case study are the combinations of two
different normalization schemes, ratio and target normalization to
[0,1], with four different aggregation functions: the weighted and
non-weighted arithmetic and geometric means.

5.1. Background Information on Assessing Progress Towards Bioenergy
Sustainability

This case study builds from work to identify a limited set of indi-
cators of progress toward sustainability for bioenergy systems and
data collected for those indicators. Researchers at the Center for
BioEnergy Sustainability at Oak Ridge National Laboratory have iden-
tified 35 indicators covering environmental, social, and economic
aspects of sustainability of bioenergy systems (Dale et al., 2013,
McBride et al., 2011). Under research of the Southeastern Partnership
for Integrated Biomass Supply Systems (IBSS), data were collected
for a number of these indicators for switchgrass (Panicum virgatum)
to examine actual yields and production costs under a wide range of

Fig. 1. Flowchart of a normalization and aggregation procedure utilized in multi-criteria sustainability assessment. Beginning with raw data for an indicator, data is transformed
and aggregated multiple times before its eventual inclusion in a sustainability index or score.
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physical settings and realistic farm management conditions in east
Tennessee (Parish et al., 2016). Switchgrass is native to the south-
eastern United States and was planted within an eleven-county area
to support a demonstration-scale ethanol production biorefinery in
Vonore, Tennessee, that was operated by DuPont Cellulosic Ethanol
(Tiller, 2011). To illustrate how normalization can affect aggregate
scores of sustainability, this case study focuses on aggregation of
three indicators: phosphorus levels in an adjacent water catchment
(mg/L), yield of switchgrass (tons/acre), and percent organic matter
(%OM) of soil in fields within the study using two normalization sce-
narios. The combination of these indicators has been chosen due to
availability of high quality data sets. A comprehensive assessment of
progress towards bioenergy sustainability would utilize many more
of the 35 indicators identified in McBride et al. (2011) and Dale et al.
(2013). Given that the focus of this paper is on the analysis method-
ology presented, using this small set of indicators is done to aid in
clarity and tractability. The approach developed in this paper is gen-
eral and can be applied to a variety of assessments scenarios when
aggregate scores are derived through normalized indicator measure-
ments where the number of indicators, normalization scheme, and
aggregation functions can vary.

5.2. Ratio Normalization Scenarios

In the ratio normalization scenarios, the derivation of the com-
posite sustainability score S follows the procedure outlined below.
Results are provided in Table 5.

1. Individual measures, x∗
ij, of each indicator are normalized to

values, xij, under the function xij = fi(x∗
ij). In this example,

f1 = RS,j (smaller-the-better, ratio normalization), f2 = RL,j
(larger-the-better, ratio normalization), and f3 = RL,j (larger-
the-better, ratio normalization). See Table 1 for definitions.

2. The arithmetic mean is employed to aggregate the normalized
measurements, such that ai( fi(x∗

ij)) = 1
ni

∑ni
j=1 fi(x∗

ij), where
ni is the number of measurements for indicator i, to give
an aggregate value for the normalized measures, which is
denoted as x̄i = ai( fi(x∗

ij)).
3. The aggregate normalized measures for each indicator, x̄i,

are used to to calculate S under the aggregation function
A(x̄1, x̄2, x̄3). In this case A is taken to be each of the arithmetic
mean (AM), geometric mean (GM), weighted arithmetic mean
(WAM), and weighted geometric mean (WGM).

5.3. Target Normalization Scenarios

For the target normalization scenarios, the derivation of the com-
posite sustainability score S follows the procedure outlined below.
Notation has been changed from x to y in the target normalization

Table 5
Ratio normalization of bioenergy sustainability indicators: Indicators, notation, and
appropriate parameters for the indicator data sets are presented.

Ratio normalization

xi : Indicator (units) ni minj{x∗
ij} maxj{x∗

ij} x̄i

xi : Phosphorus (mg/L) 113 0.003 0.491 0.036
x2 : Yield (tons/acre) 10 0 6.58 0.422
x3 : % Organic matter (%) 120 0 7.24 0.410

S: Composite score derived from ratio normalized indicators
S = AM(x̄1, x̄2, x̄3) = 0.290
S = GM(x̄1, x̄2, x̄3) = 0.185

Note: ni is the number of measurements for indicator i, x̄i is the arithmetic mean of
the ratio normalized measurements of indicator i.

Table 6
Target normalization of bioenergy sustainability indicators: indicators, notation, and
appropriate parameters for the indicator data sets are presented.

Target normalization

yi : Indicator (units) ni Baseline Target ȳi

y1 : Phosphorus (mg/L) 113 B = 0.1 T = 0 0.123
y2 : Yield (tons/acre) 10 B = 0 T = 8 0.348
y2 : % Organic matter (%) 120 B = 1.4 T = 4 0.545

S : Composite score derived from target normalized indicators
S = AM(ȳ1, ȳ2, ȳ3) = 0.339
S = GM(ȳ1, ȳ2, ȳ3) = 0.286

Note: The notation yi is used to distinguish between the two different normalization
procedures, the underlying data set for each indicator is the same in both cases. ni is
the number of measurements for indicator i, ȳi is the arithmetic mean of the target
normalized measurements of indicator i.

scheme to distinguish between the two different normalization pro-
cedures; the underlying data sets for the indicators are the same in
both cases. Results, along with baseline and target values used for the
target normalization scenarios, are provided in Table 6.

1. Individual measures, y∗
ij, of each indicator are normalized to

values, xij, under the function yij = fi(y∗
ij). In this example,

f1 = TS,j (smaller-the-better, target normalization), f2 = TL,j
(larger-the-better, target normalization), and f3 = TL,j (larger-
the-better, target normalization). See Table 1 for definitions.

2. The arithmetic mean is employed to aggregate the normalized
measurements, such that ai( fi(y∗

ij)) = 1
ni

∑ni
j=1 fi(y∗

ij), where
ni is the number of measurements for indicator i, to give an
aggregate value for the normalized measures, which will be
denoted as ȳi = ai( fi(y∗

ij)).
3. The aggregate normalized measures for each indicator, ȳi,

are used to to calculate S under the aggregation function
A(ȳ1, ȳ2, ȳ3). In this case A is taken to be each of the arithmetic
mean (AM), geometric mean (GM), weighted arithmetic mean
(WAM), and weighted geometric mean (WGM).

Baseline and target levels for yield (tons/acre) are derived from
expert opinion based on extensive data for the case study as
described in Parish et al. (2016). Phosphorus concentration (mg/L)
target and baseline levels have been set to 0 (mg/L) and 0.1 (mg/L)
based on what is considered a critical concentration (Walker, 2000).
The values for % organic matter baseline and target levels are based
on Brady et al. (1996), who provide 1.5%–4.0% as a range of values
for %OM in Ultisol, the dominant soil type in the bioenergy cropping
region for this case study.

5.4. Quantifying Impacts of Indicator Measurements

Aggregate values for each indicator and for the composite sus-
tainability score S are different when internally normalized by
ratio normalization and when tied to external target and baseline
values in the target normalization process. These differences are
to be expected. Comparing and applying meaning to the different
aggregate results derived from ratio and target normalization is
not recommended, given how different the two normalization
approaches are. However, what can be contrasted is how the com-
posite score of sustainability, S , is impacted, as non-normalized data
measures change in each normalization scenario explored.

The impact, or weight, that individual indicator measurements
carry into the score S can become unclear in composite scores
of sustainability. For example, in this case study, one may ask if
the measurements of phosphorus are having more influence on S
than the measurements of yield? One might also ask, what role the
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Table 7
Change in composite scores of ratio normalized bioenergy sustainability indicators as a function of non-normalized indicator measurements.
The weighted arithmetic and geometric mean derivatives have been left in a general form to show influence of the weights, wi , without need
of a particular specification.

∂
∂x∗

ij
(S) : Change in composite score with respect to change in x∗

ij

Arithmetic mean:S = AM
∂

∂x∗
1j

(AM(x̄1, x̄2, x̄3)) = ( 1
3 )( 1

n1
)
( −minj{x∗

1j}
(x∗

1j)
2

)
= (−8.85 × 10−6)(x∗

1j)
−2

∂
∂x∗

2j
(AM(x̄1, x̄2, x̄3)) = ( 1

3 )( 1
n2

)
(

1
maxj{x∗

2j}

)
= 0.0051

∂
∂x∗

3j
(AM(x̄1, x̄2, x̄3)) = ( 1

3 )( 1
n3

)
(

1
maxj{x∗

3j}

)
= 0.0004

Geometric mean: S = GM
∂

∂x∗
1j

(GM(x̄1, x̄2, x̄3)) = ( 1
3 )(x̄2 x̄3)1/3(x̄1)−2/3( 1

n2
)
( −minj{x∗

1j}
x∗

1j

)
= −(4.33 × 10−6)(x∗

1j)
−2(x̄1)−2/3

∂
∂x∗

2j
(GM(x̄1, x̄2, x̄3)) = ( 1

3 )(x̄1 x̄3)1/3(x̄2)−2/3( 1
n2

)
(

1
maxj{x∗

2j}

)
= 0.0012(x̄2)−2/3

∂
∂x∗

3j
(GM(x̄1, x̄2, x̄3)) = ( 1

3 )(x̄1 x̄2)1/3(x̄3)−2/3( 1
n3

)
(

1
maxj{x∗

3j}

)
= 0.0001(x̄3)−2/3

Weighted arithmetic mean: S = WAM
∂

∂x∗
1j

(WAM(x̄1, x̄2, x̄3)) = (w1)( 1
n1

)
( −minj{x∗

1j}
x∗

1j

)
∂

∂x∗
2j

(WAM(x̄1, x̄2, x̄3)) = (w2)( 1
n2

)
(

1
maxj{x∗

2j}

)
∂

∂x∗
3j

(WAM(x̄1, x̄2, x̄3)) = (w3)( 1
n3

)
(

1
maxj{x∗

3j}

)

Weighted geometric mean: S = WGM
∂

∂x∗
1j

(GM(x̄1, x̄2, x̄3)) = (w1)(x̄2
w2 x̄3

w3 )(x̄1)1−w1 ( 1
n2

)
( −minj{x∗

1j}
x∗

1j

)
∂

∂x∗
2j

(GM(x̄1, x̄2, x̄3)) = (w2)(x̄1
w2 x̄3

w3 )(x̄2)1−w2 ( 1
n2

)
(

1
maxj{x∗

2j}

)
∂

∂x∗
3j

(GM(x̄1, x̄2, x̄3)) = (w3)(x̄1
w1 x̄2

w2 )(x̄3)1−w3 ( 1
n3

)
(

1
maxj{x∗

3j}

)

Note: The derivatives above hold for the case when, for indicator 1, x∗
1j > x∗

1k∀k �= j, otherwise x∗
1j = minjx∗

1j and thus takes on the constant
normalized value of 1, and thus the derivative is 0. For indicators 2 and 3, the case is similar, but the derivatives hold when x∗

2j < x∗
2k and

x∗
3j < x∗

3k∀k �= j. The weights must satisfy 0 ≤ wi < 1 and
∑n

i=1 wi = 1.

normalization and aggregation functions chosen have on determin-
ing any differential impacts on S for specific indicators? Tables 5
and 6 give values for S as calculated through the arithmetic and
geometric mean for the ratio and target normalization schemes.
Tables 7 and 8 give the partial derivatives of those scores with respect
to changes in non-normalized indicator measures for each of the
three indicators as calculated using Eq. (3); these derivatives serve
as the starting point in elucidating differing impact on changes in
S from different normalization schemes. The derivatives in Tables 7
and 8 give exact formulas for analysis; the plots given in Figs. 2 and 3
provide another way to visualize differences in impact of changes in
the non-normalized indicator measures given the different normal-
ization functions applied. All derivative functions can be calculated
with respect to an arbitrary non-normalized measurement x∗

ij; how-
ever, in order to create the visualizations in Figs. 2 and 3, a specific
indicator measurement in the data set must be chosen to vary. In this
case the median value was chosen and varied, and the corresponding
value of S was calculated and plotted. Together, the derivatives and
the visualizations provide two tools that can be used to study how
normalization affects this composite score of sustainability.

With the results presented in Tables 5 through 8, one can see
not only how the different normalization functions affect S but
also how the aggregation functions for individual indicators, ai, and
the aggregation function A affect the value of S as non-normalized
measures are changed. As discussed in Section 3.2, given the piece-
wise definition of many of the normalization functions, a similar
piecewise definition of the derivatives is needed. For clarity, the
derivatives presented in Tables 7 and 8 represent the behavior of
S for x∗

ij values changing away from the minimum and maximum
values, for the ratio normalization scheme, and in between the target

and baseline values, for the target normalization scheme. Further
discussion of how S changes as non-normalized values take on the
minimum and maximum values is given in detail in Section 6.1.

6. Discussion

In order to understand the different influences that a normaliza-
tion function can have on a composite sustainability score, properties
of normalization functions have been discussed, and an analysis
using partial derivatives of the aggregation and normalization func-
tions has been presented. Even though calculation of the derivatives
shown in Table 7 and Table 8 adds a step to the assessment process,
the application and interpretation of the quantities derived improves
overall understanding of the composite score for the sustainability
indicators.

The first useful information added by calculating the derivatives
is nearly by definition; derivatives indicate the per unit change in
the composite score, S , due to a per unit change in a non-normalized
measurement, x∗

ij. As such, differences in the derivatives quantify
differential sensitivities in the sustainability score by indicator. For
example, Table 7 shows that the composite score S is nearly 12 times
as sensitive to a per unit change in a yield measurement as it is to
a unit change in a %OM measure when ratio normalization and the
arithmetic mean are used.

Beyond just the different sensitivities of the aggregate score, S ,
with respect to changes in indicator measurements, Figs. 2 and 3
show that different normalization procedures lead to fundamen-
tally different ways in which indicator measurements impact the
composite score. This difference is apparent not only across the
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Table 8
Change in composite scores of target normalized bioenergy sustainability indicators as
a function of non-normalized indicator measurements. The weighted arithmetic and
geometric mean derivatives have been left in a general form to show influence of the
weights, wi , without need of a particular specification.

∂
∂y∗

ij
(S) : Change in composite scores with respect to change in y∗

ij

Arithmetic mean: S = AM
∂

∂y∗
1j

(AM(ȳ1, ȳ2, ȳ3)) = ( 1
3 )( 1

n1
)( −1

B1−T1
) = −0.0295

∂
∂y∗

2j
(AM(ȳ1, ȳ2, ȳ3)) = ( 1

3 )( 1
n2

)( 1
T2−B2

) = 0.0042
∂

∂y∗
3j

(AM(ȳ1, ȳ2, ȳ3)) = ( 1
3 )( 1

n3
)( 1

T3−B3
) = 0.0011

Geometric mean: S = GM
∂

∂y∗
1j

(GM(ȳ1, ȳ2, ȳ3)) = ( 1
3 )(ȳ2ȳ3)1/3(ȳ1)−2/3( 1

n1
)
(

−1
B1−T1

)
= −0.0169(ȳ1)−2/3

∂
∂y∗

2j
(GM(ȳ1, ȳ2, ȳ3)) = ( 1

3 )(ȳ1ȳ3)1/3(ȳ2)−2/3( 1
n2

)
(

1
T2−B2

)
= 0.0017(ȳ2)−2/3

∂
∂y∗

3j
(GM(ȳ1, ȳ2, ȳ3)) = ( 1

3 )(ȳ1ȳ2)1/3(ȳ3)−2/3( 1
n3

)
(

1
T3−B3

)
= 0.0004(ȳ3)−2/3

Weighted arithmetic mean: S = WAM
∂

∂y∗
1j

(AM(ȳ1, ȳ2, ȳ3)) = (w1)( 1
n1

)( −1
B1−T1

)
∂

∂y∗
2j

(AM(ȳ1, ȳ2, ȳ3)) = (w2)( 1
n2

)( 1
T2−B2

)
∂

∂y∗
3j

(AM(ȳ1, ȳ2, ȳ3)) = (w3)( 1
n3

)( 1
T3−B3

)

Weighted geometric mean: S = WGM
∂

∂y∗
1j

(GM(ȳ1, ȳ2, ȳ3)) = (w1)(ȳ2
w2 ȳ3

w3 )(ȳ1)1−w1 ( 1
n1

)
(

−1
B1−T1

)
∂

∂y∗
2j

(GM(ȳ1, ȳ2, ȳ3)) = (w2)(ȳ1
w1 ȳ3

w3 )(ȳ2)1−w2 ( 1
n2

)
(

1
T2−B2

)
∂

∂y∗
3j

(GM(ȳ1, ȳ2, ȳ3)) = (w3)(ȳ1
w1 ȳ2

w2 )(ȳ3)1−w3 ( 1
n3

)
(

1
T3−B3

)
Note: These derivatives hold for the case when y∗

ij falls within the interval created
by the targets (Ti) and baselines (bi) for the respective indicators. The weights must
satisfy 0 ≤ wi < 1 and

∑n
i=1 wi = 1.

normalization schemes presented, but fundamental differences can
emerge within the same scheme. For example, setting aside behavior
changes near the extremal values, within the ratio normalization
scheme if an indicator is of the type smaller-the-better, then a change
in a measurement of that indicator has an impact on the composite
score that depends on the value of the measurement changing. This
is due to the presence of x∗

1j term in the derivative (see Figs. 2a and
2b). However, if the indicator is of the type larger-the-better, then
the impact of a change in a measurement of that indicator on S is
independent of the value that is changing (see Figs. 2c, 2e, 2d, and
2f). With respect to the extremal values, it can also be seen that
as the minimum (maximum) value changes in smaller-the-better
(larger-the-better) type indicators, there is a dramatic change in the
score of S (see Fig. 2). This change is due to the internal normal-
ization property of the ratio normalization functions, and, when the
minimum or maximum changes for a data set, all of the other mea-
surements in the data set also change causing S to be very sensitive
to changes in the extremal values of the data set.

In the target normalization scheme, Fig. 3 shows that in both
smaller-the-better and larger-the-better indicator bearing, behavior
does not display the fundamental differences that can be be seen
between these two bearings in the ratio normalization scheme. In the
case of the final aggregate score calculated through the arithmetic
mean, changes in S are constant when non-normalized indicator
measures change between the baseline and target values. For the
geometric mean, although the change between baseline and target
values appears to be constant, it is not, as the derivatives in Table 8
show. In both cases changes in S are 0 when non-normalized mea-
sures change beyond the baseline and target measures defined.
Target normalization is free from the dramatic changes in S that
appear in ratio normalization as extremal values change in the data
set. In target normalization, if a non-normalized measure changes to
a value beyond the baseline or target, it ends up having no impact on

S because the normalized value for that measurement is constant at
either 0 or 1 beyond those threshold values.

6.1. On the Piecewise Nature of Derivatives Encountered

All functions of the ratio normalization and target normalization
schemes are piecewise differentiable; this fact leads to complicated
behavior of the derivatives. Up to this point of the paper, there
has been limited discussion on how to analyze the behavior of S
when non-normalized measures change to become the minimum or
maximum values in the ratio normalization scheme and when non-
normalized measures move beyond the baseline and target values in
target normalization.

Fig. 2 addresses the behavior of S in the ratio normalization
scenarios. Notice that in all six plots that the derivatives given in
Table 7 hold until the indicator value becomes the maximum or min-
imum value for the data set, at which point one needs to consider
how a change not just in x∗

ij impacts S , given by ∂S
∂x∗

ij
but also how

changing maxj{x∗
ij} impacts S , given by ∂S

∂maxj{x∗
ij}

. In practice for ratio

normalization, there are four different cases one needs to consider to
capture all the behaviors that may occur as indicator values change:

1. x∗
ij is not the maximum (or minimum, respectively), and changes

do not cause it to become so. In this case, one can analyze
the impact of changes in x∗

ij without need to consider ∂S
∂maxj{x∗

ij}
(these are the derivatives shown in Table 7).

2. x∗
ij is not the maximum (or minimum, respectively), and changes

cause it to become so. In this case, one must consider both ∂S
∂x∗

ij

and ∂S
∂maxj{x∗

ij}
.

3. x∗
ij is the maximum (or minimum, respectively), and changes do

not cause it to become otherwise. In this case one need only
consider ∂S

∂maxj{x∗
ij}

.

4. x∗
ij is the maximum (or minimum, respectively), and changes

cause it to become otherwise. In this case one again needs to
consider both ∂S

∂x∗
ij

and ∂S
∂maxj{x∗

ij}
.

In the target normalization scheme, the changes in S as a func-
tion of the changes in indicator values are more easily captured,
even though they are also defined piecewise. This behavior is due
to the fact that target normalization is not an internal normaliza-
tion process. The cases for target normalization have to do with the
measurement value changing between the baseline and target val-
ues defined and the changing beyond those values. As it is shown in
Fig. 3, there is no dramatic change as indicator values move outside
the interval defined by the baselines and targets. In fact, once an indi-
cator measurement moves beyond the baseline or target values, the
change in S becomes exactly 0.

7. Opportunities for Further Research

Further research may seek to investigate additional normaliza-
tion functions not included in this paper. The techniques developed
in this paper are general in their application, with regard to the type
of normalization functions and aggregation functions that can be
analyzed and used. In addition to expanding analysis to other nor-
malization schemes, determining the sensitivity in the calculation of
a composite sustainability score, S , to other normalization scheme
parameters, such as the targets and baseline(s) defined in target
normalization, would also be valuable. Additional topics of interest
include the quantification of implicit weights and studying normal-
ization in the context of meaningful aggregation. These two topics
are discussed next and examples are included.
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Fig. 2. Changes in S in response to changes in median values of from the data sets for phosphorus (x∗
1,med), yield (x∗

2,med), and %OM (x∗
3,med) under ratio normalization scheme.

Dashed lines show minjx∗
ij and maxjx∗

ij values from Table 5. In all cases, the median value from each data set was varied in order to show the effect that changing non-normalized
indicator measures has on S. Notice the behavior of S when the median value becomes the minjx∗

ij in (a,b) and the maxjx∗
ij in (c,d,e,f). This dramatic change is due to the fact that

ratio normalization is an internal normalization process, and the dependence of all normalized values in the data set on the minimum or maximum value of that data set. All
functions depicted correspond to functions presented in Table 7.

7.1. Quantification of Implicit Weights

In some specific cases, the differential impacts on S can be writ-
ten as a set of weights associated with each indicator given the
normalization function, fi, indicator aggregation function, ai, and
final aggregation function, A that are chosen. Further development
of methods to quantify implicit weights could prove useful and
would provide stakeholders a quick way to determine the relative
importance placed on each indicator resulting from the mathemat-
ical structure of the sustainability score. The simplest case of when
these implicit weights can be calculated occurs when the the partial
derivatives, found using Eq. (3), are constant. For example, consider

the derivatives in Table 8 when S = AM, the arithmetic mean
and values are not changing beyond baseline or target measures.
We have the derivatives for ∂S

∂y∗
1,j

= −0.0295, ∂S
∂y∗

2,j
= 0.0042, and

∂S
∂y∗

3,j
= 0.0011. The implicit weights, call them wi, for each indicator

measurement are

wi =

∣∣∣∣ ∂S
∂y∗

i,j

∣∣∣∣
∑3

k=1

∣∣∣∣ ∂S
∂y∗

k,j

∣∣∣∣
,
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Fig. 3. Changes in S in response to changes in median values of from the data sets for Phosphorus (y∗
1,med), Yield (y∗

2,med), and %OM (y∗
3,med) under target normalization scheme. In

all cases, the median value from each data set was varied in order to show the effect that changing non-normalized indicator measures has on S. Dashed lines show normalization
parameters from Table 6. When the median value is changed to values outside the baseline and target intervals, there is no response in S to further changes due to the normalized
value becoming a constant 0 or 1. All functions depicted correspond to functions presented in Table 8.

specifically, this scenario produces weights of w1= 0.85, w2= 0.12,
w3 = 0.03 for phosphorus, yield, and %OM matter indicators, respec-
tively. However, it should be pointed out that these are changes
in S per a unit change in the indicators within the target and
baseline range. For indicators, such as the water quality indicator
of Phosphorus, a unit change (say from 0 to 1 mg/L) is very large
and would in fact move any measurement within the target and
baseline values to a value outside of that range. Once again, the chal-
lenge of working with multiple indicators on various scales shows
up. In an instance such as this, which is likely to be very common
in sustainability assessment, the question becomes, how can one
use the information contained in the derivatives to quantify implicit
weights adjusted to the scales of the indicators?

Using the derivatives, ∂S
∂y∗

1,j
= −0.0295, ∂S

∂y∗
2,j

= 0.0042, and
∂S
∂y∗

3,j
= 0.0011, we can capture a more relevant quantity related to

changing an indicator measure by, instead of considering a single
unit change, using the baseline and target values to provide a range
for changes that are relevant to the indicator. Specifically, one can
multiply the derivative value by the difference in the baseline and
targets,

• (−0.0295)|T1 − B1| = (−0.0295)|0 − 0.1| = 0.00295
• (0.0042)|T2 − B2| = (0.0042)|8 − 0| = 0.0336
• (0.0011)|T3 − B3| = (0.0011)|4 − 1.5| = 0.00275,
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for Phosphorus, Yield, and %OM, respectively. This use of the deriva-
tives, baselines, and targets has immediately provided something
useful; this calculation is the analytical analog to derive the numer-
ical quantities that one can gather by taking the difference of the
maximum and minimum values of the plots provided in Figs. 3a, 3c,
3e, respectively. With these scale adjusted responses of S to changes
in indicator measurements, we can now revisit our quantification of
implicit weights and calculate scale-adjusted implicit weights, ŵi, in
the following way,

ŵi =

∣∣Ti − Bi
∣∣ ∣∣∣∣ ∂S

∂y∗
i,j

∣∣∣∣
∑3

k=1 |Tk − Bk|
∣∣∣∣ ∂S
∂y∗

k,j

∣∣∣∣
. (4)

Using this formulation, the scale adjusted weights are ŵ1 = 0.075,
ŵ2 = 0.855, ŵ3 = 0.070 for phosphorus, yield, and %OM matter
indicators, respectively. These scale-adjusted weights now represent
the relative impact each indicator measurement has on the aggre-
gate output S as the measurement varies between the baseline and
target values.

7.2. Normalization and Meaningful Aggregation

How normalization functions transform measurability scales of
data can also be investigated in order to utilize results from previous
research into meaningful statements made with aggregate values,
sometimes just referenced as meaningful aggregation. The topic of
meaningful aggregation arises in sustainability and environmental
assessment (Pollesch and Dale, 2015;Roberts, 2014;Böhringer and
Jochem, 2007;Zhou et al., 2006;Ebert and Welsch, 2004) and uses
the measurability scale of indicator data to provide a method for
selecting aggregation functions. Examples of measurability scales
include ratio, interval, ordinal, and nominal (Stevens, 1946). Knowl-
edge of these scales, along with an application of Luce’s principle
(Luce, 1959), is used to ensure that, when data are transformed,
they are transformed in such a way that the information contained
in the data is maintained; such transformations are referred to as
meaningful transformations. If one determines how or if the normal-
ization function changes the scale of measurement of the data being
considered, it is then possible to utilize results of previous research in
meaningful aggregation and to create an aggregate score of sustain-
ability that adheres to the principles therein. For example, ratio-scale
measurable indicators occur frequently in sustainability assessment.
These indicators are identified by differences between data points
having meaning, ratios of data points having meaning, and the exis-
tence of a non-arbitrary zero point for the data being measured.
Pollesch and Dale (2015) showed that of the 19 environmental indi-
cators for bioenergy sustainability identified in McBride et al. (2011),
all but one indicator is ratio-scale measurable. For an example of how
normalization functions affect scales of measurement, consider an
indicator that is ratio-scale measurable.

• Applying any of the functions in the ratio normalization
scheme to a ratio-scale measurable indicator results in a unit
less ratio-scale measurable indicator. The non-arbitrary zero
value stays the same, and the normalized value now defines a
new ratio scale.

• Z-score standardization of ratio-scale measurable data assigns
a value of zero to the mean value of the data set, and the
unit less quantity represented by a Z-score is also ratio-scale
measurable. The normalized value represents the number of
standard deviations the original value is away from the mean,
thus Z-score standardization transforms ratio-scale measur-
able data to a new ratio scale.

• Unit equivalence normalization is scalar multiplication, and
thus for any non-zero conversion factor cf , the normalized
measurability scale of ratio-scale measurable data is a new
ratio scale.

As an opportunity for future research, further investigation as to
how the normalization process changes measurability scale can be
carried out for different combinations of measurability scale types
and normalization functions. This analysis would allow identifica-
tion of meaningful aggregation functions for indicators included in a
sustainability assessment.

8. Conclusions

This paper investigates properties of normalization functions and
explores the implications that different choices of normalization
schemes can have when normalized values are included in aggre-
gate measures of sustainability. Ratio normalization, Z-score nor-
malization, unit equivalence normalization, and target normalization
schemes are analyzed for their behavior in terms of internal nor-
malization, the structure of their derivatives, and comparability
of normalized values. We introduce the term bearing to unify
the variety of terminology present in literature that is used to
discuss this property of indicators. The case study motivates
the theoretical analysis of normalization schemes by demon-
strating how the properties of normalization functions manifest
in the simple three-indicator bioenergy sustainability assessment
provided.

Quantification of sustainability is approached using a variety of
metrics, many of which utilize indicators as stand-alone measures or
within aggregate values. Indicator approaches for assessing progress
towards sustainability include, at a minimum, information about the
economic, social, and environmental aspects of the system being
studied. Given the large number of indicators that can be used within
an assessment, there is often stakeholder interest and a benefit
in combining sustainability indicators. Although clarity is seen as
a benefit when combining indicators, as indicator measurements
are combined, this benefit comes at the cost of lost information
and data resolution. This is inherent in any aggregation procedure.
Gasparatos and Scolobig (2012) provide a good discussion on trade-
offs arising in sustainability assessment. Normalization of indicators,
although almost always prerequisite for aggregation of indicators,
elicits tradeoffs within the analysis as well.

The case study shows differences of behavior between ratio
and target normalization schemes. The consequence of ratio nor-
malization functions being internal is especially evident in Fig. 2
where the aggregate score of sustainability S is impacted greatly
as measures change the extremal values of the data set. The ratio
normalization scheme has fundamental differences in the behavior
of smaller-the-better and larger-the-better normalization functions.
Specifically, for smaller-the-better bearing indicators, the impact of
changes on S in non-normalized measures differs depending on
where those measures are in relation to the minimum value for
that data set (see Figs. 2a and 2b), whereas larger-the-better type
indicators do not have this dependence. This discrepancy between
indicator bearing type does not occur when target normalization is
used. Both normalization schemes have behaviors that change as
non-normalized measures are varied near threshold values. These
are the minimum or maximum values, in the case of ratio normaliza-
tion, and baseline and target values in target normalization. This set
of behaviors differs near threshold values in complexity and influ-
ence on predictability of how aggregate outcomes are impacted by
changes in non-normalized values across these two normalization
schemes.
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This research highlights some of the advantages and disadvan-
tages associated with normalization schemes used in sustainability
assessment and the calculation of a composite score of sustain-
ability. The internal normalization procedures, Z-score and ratio
normalization are easier to implement on a data set given that
they do not require externally defined targets and baselines encoun-
tered in target normalization or the multitude of conversion factors
required for unit equivalence normalization. However, the internal
normalization procedures have disadvantages when it comes to
the dependence exhibited in the normalized values on extremal
values of the data set and how that dependence manifests in aggre-
gate sustainability scores derived from those normalized values.
With respect to ratio normalization, the difference between how
changes in smaller-the-better and larger-the-better type indicators
can impact normalized values and aggregate values derived thereof
is of concern. The different cases that one might encounter due
to the piecewise differentiability of ratio and target normalization
functions are not present in Z-score and unit equivalence normal-
ization. The change in normalized value with respect to changes
in non-normalized measures presented in Table 3 show that
unit-equivalence normalization has the simplest partial derivative
expression of the four schemes, while Z-score normalization pro-
duces quite a complicated expression for the partial derivative, even
without needing to consider the different scenarios of the piecewise
defined derivatives for ratio and target normalization.

Of the four normalization schemes explored in-depth in this
paper, target normalization stands out as a candidate for use within
sustainability assessment. In sustainability assessment, context is
extremely important, and a strength of target normalization is that
it allows for the inclusion of contextually relevant normalization
parameters in the forms of baseline and target values. This context
specificity also aids in the interpretation of normalized values. Addi-
tionally, as discussed previously, functional forms across bearing
type within target normalization are more consistent than those
used within the ratio normalization scheme. Although target normal-
ization is a stand-out when it comes to sustainability assessment for
the reasons just provided, it is recommended that advantages and
disadvantages of normalization schemes be considered before inclu-
sion in any assessment application; this paper will aid researchers in
this regard.

This paper will also help researchers and stakeholders by
providing methods to clarify connections between normalization
scheme and the accompanying impact that normalization functions
choice can have on the aggregation of indicators measuring progress
towards sustainability. The derivatives based approach shown in this
paper was chosen to elucidate how general properties of normaliza-
tion functions, such as internality, manifest to create specific depen-
dencies in aggregate assessment outcomes. The derivatives based
approach also provides a foundation upon which other analysis can
be developed. Specifically, the scale adjusted implicit weights formu-
lation (Eq.(4)) shows promise, with further development, to become
a standard method for reporting indicator specific sensitivities that
can accompany aggregate scores of sustainability.
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