Balancing biological control and other ecosystem services in bioenergy landscapes

Claudio Gratton
Randy Jackson and Tim Meehan

Department of Entomology
University of Wisconsin - Madison

Humans change landscapes

Wildlife is habitat and landscape dependent

Natural Pest suppression

Pollination

Bird richness

Measuring who is there, and how many there are, is relatively easy Relating them to how they benefit humans is more difficult

Measuring biocontrol potential

Annual crops Forest Other crops Urban Grassland Wetland Suburbs

Relating to landscape features

Biocontrol Assay

Landscape context affects biological control potential

Biological control potential and landscape perenniality decrease pesticide applications

Farmers behavior appears to be linked to landscape composition (which drives biocontrol index).

Modeling Biological control in current landscapes

Bell's Vireo

Dickcissel

Field sparrow

Boblink

Loggerhead shrike

Change in total richness (%) under HILD scenario

Change in total richness (%) under LIHD scenario

Convert annual **crop** (corn) near streams or highly erodible land to **perennial grassland**

- Corn and soy
- Open water
- Urban
- Forest
- Grassland
- Wetland

Focal land

Corn and soy located within 100 meters of stream

17% land in corn, corn-soy rotations

6% increase pest suppression Average to control and a survey of the control and a surve index 42 Corn 80 0.06 Grassland 2.6 0

Reduction in net income (\$1,000 ha⁻¹)

Reduction in net income (\$1,000 ha⁻¹)

Mean normalized benefit-cost ratio

Landscape services

Landscape services

Natural Pest suppression

Pollination Services

Income (\$)

Biomass (Gg)

Energy (PJ)

Soil (Tg C storage)

Water Quality (Mg P export)

Take-away messages

- Linking biodiversity to ecosystem services is critical
- Agricultural landscape patterns are important to the provisioning of ecosystem services
- Understanding spatial tradeoffs in agriculture/bioenergy landscapes of ecosystem services that includes biodiversity
- "Keystone" hectares can be identified in the landscape where tradeoffs can be evaluated (but how to assign value is difficult)