

Designing for environmental and socioeconomic sustainability

M. Cristina Negri, Herbert Ssegane and John Quinn Energy Systems Division

Incorporating Bioenergy in Sustainable Landscape Designs Workshop 2: Agricultural Landscapes Argonne National Laboratory June 25, 2014

The vision: sustainable, multipurpose landscape Apply resource recovery principles to biomass production

Design elements

- Site and scale
 - Field, watershed
- Objectives what do we want to do
 - Multiple objectives to prioritize
- Crop characteristics
 - Crops
 - Functions
 - Models
 - Visualizations for feedback
- Engineering function into land use

Watershed land properties as a base for design

Comparing marginal classification and SWAT model hotspots

All impairments- total acreage

Total acreage with at least two forms of marginality 8,372 acres

Sample acreage under marginality

Marginality	Acreage	Acreage enrolled in Conservation Stewardship Program (CSP)
Frequent flooding	286	56
Flooding and Nitrate leaching	18	3
Flooding and drainage	540	48
Run-off, crop productivity, and nitrate leaching	968	308
Run-off and crop productivity	335	96
Total	2,147	511

Field scale site - Sub-field productivity and environmental data aid the design

DEM and flow path lengths DEM [FT] Longest flow path _ Field boundary

Deep rooted and/or phreatophyte perennials are engineering tools

Source: J.E. Weaver

Know where your roots are growing

plume delineation through tissue tracer analysis confirms rooting depth

Nearest neighbor willow trees

Water Resources allocation addressed by groundwater modeling and water use measurement

- Understand hydrology, from field to watershed, to determine amount of water withdrawal vs recharge/flow that is sustainable for a specific local context
- Plant to target specific sustainable consumptive use, and measure at maturity

Quinn J.J., M.C. Negri, R.R. Hinchman, L.M. Moos, J.B. Wozniak and E. G. Gatliff (2001). *Predicting the Effect of Deep-Rooted Hybrid Poplars on the Groundwater Flow System at a Large-Scale Phytoremediation Site*. <u>Int. Journal of Phytoremediation</u> Vol.3 n. 1, pp. 41-60.

	2008		2009	
Tree	DBH (cm)	Total Wood Sap Flow (L/day)	DBH (cm)	Total Wood Sap Flow (L/day)
Mean	19.2	121.7	23.2	173.7
Min	15.9	34.4	18.4	76.8
Max	22.9	219.8	29.3	248.4
StDev	3.5	57.5	2.7	44.3

Tools: SWAT, Denitrification-Decomposition [DNDC] model simulations

Socioeconomic sustainability

A sustainable bioenergy landscape

Marcita in Tavernasco, Italy. © Daniele Garnerone.

E. Detaille, Charge of the 4th Hussars at the battle of Friedland, 14 June 1807 - http://upload.wikimedia.org/wikipedia/commons/1/10/Detaille_4th_French_hussar_at_Friedland.jpg

http://www.griffini.lo.it/laScuola/prodotti/Monachesimo/economia/lavoroagricolo.htm

Thank you to the team

- Project sponsors: DOE-BETO
- Patty Campbell
- Michael Barrows, Salman Ali, Samantha Fuchs, Allison Pillar and Irene Zhang
- Paul Kilgus
- Terry Bachtold –Livingston County SWCD
- Eric McTaggart, USDA-NRCS
- Gayathri Gopalakrishnan
- CTIC
- The Indian Creek Watershed Project Leadership and Sponsors