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Highlights
●● Biodiversity resources are unevenly distributed across the globe. As a consequence 

of the asymmetrical geographic distribution of species, any consideration of the 
impacts of biofuels on biodiversity is likely to be biome, site and context specific. 
Land transformation is the most serious threat to biodiversity, and the rapid 
expansion of biofuels crops, most especially sugarcane and palm oil in the tropics, 
is currently the most serious of these concerns. Thus effects of biofuel feedstock 
production on biodiversity and ecosystem services are context specific, and 
location-specific management of biofuel feedstock production systems should be 
implemented to maintain biodiversity and ecosystem services. 

●● Few positive influences on biodiversity and ecosystem services result from biofuels 
development. Such positive outcomes are of limited spatial and taxonomic scale. 
Biofuels-mediated improvements can occur when already degraded lands are 
rehabilitated with non-native feedstocks, but such changes in habitat structure 
and ecosystem function support few and mostly common species of native flora 
and fauna. Even the limited evidence of perennial grass crops favoring certain 
bird species indicates the requirement of special management regimes.

●● Trade-offs between biofuels and environmental resources are inevitable. The 
mitigation of climate change via reducing GHG emissions through a transition to 
low carbon energy systems such as selected biofuels offers a logical trade-off, 
as long as the design of expanded biofuel production avoids areas of special 
biodiversity concerns or embeds new production areas within a sustainable 
matrix of natural and transformed ecosystems.

●● Available land resources exceed the projected needs for biodiversity conservation 
in terms of both the Convention on Biological Diversity target of Protected Area 
system expansion to 17% of the global terrestrial area and biofuels expansion to 
several fold current production levels. 

●● Sustainable biofuels and biodiversity management requires cross-sectoral 
integrated planning and regular monitoring of selected, cost effective and policy 
relevant indicators. Cost effective, landscape-level biodiversity indicators are in 
development but await application over most of the developing world. 
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Summary
As with all land transformation activities, effects on biodiversity and ecosystem 
services of producing feedstocks for biofuel are highly variable and context specific. 
Advances toward more sustainable biofuel production benefit from a system’s 
perspective, recognizing spatial heterogeneity and scale, landscape-design principles, 
and addressing the influences of context, such as the particular products and their 
distribution, policy background, stakeholder values, location, temporal influences, and 
baseline conditions. Deploying biofuels in a manner to reduce effects on biodiversity 
and associated ecosystem services can only be done with planning, monitoring, 
and appropriate governance. The effects of biofuels can be avoided or reduced by 
conservation of priority biodiversity areas, recognizing the context specific effects 
of biofuels, and adopting location-specific management of production systems. 
Developing those management strategies takes time and effort.

16.1 Introduction 
Biofuels can provide answers to current global energy and economic crises - both as a 
sustainable energy source and through promoting economic development, especially 
in rural areas of developing countries. Dependence on non-renewable fossil fuels as 
well as environmental concerns related to air pollution and greenhouse gas effects 
contributing to global warming and climate change have stimulated interests of policy 
makers and industry to promote bioenergy as part of energy security and climate change 
mitigation strategies. However, expansion of the feedstock production for biofuels has 
been controversial due to potential adverse side effects on natural ecosystems and the 
services they provide (Gasparatos et al. 2011). Ecosystem services are the benefits 
that humans derive from ecosystems (Mace et al. 2012) and offer a useful way to 
assess effects associated with biodiversity and energy use and its implications (see 
Highlights). There is lack of agreement on the degree to which biofuels both provide 
positive ecosystem services (e.g., fuel, climate regulation) and compromise other 
ecosystem services (e.g., biodiversity, food) (e.g., SCOPE 2009; Fischer et al. 2009).

Enhancing ecosystem services via biofuels can be achieved by location-specific design 
of bioenergy systems. If not well planned, the establishment of biofuel crops may result 
in environmental impacts (e.g., alterations in habitat or biodiversity quality, changes in 
soil and air quality, changes in water quality and quantity, productivity changes, and 
local introduction or elimination of species (McBride et al. 2011) as well as changes 
in social and economic interactions and outcomes (Koh and Ghazoul 2008; Wilcove 
and Koh 2010; Dale et al. 2013b). Such effects should be evaluated by scientists and 
policy makers in order to increase positive outcomes and reduce negative impacts of 
biofuel production. When produced in a sustainable and equitable manner, biofuels 
can increase energy self-sufficiency and support rural development as well as reduce 
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deforestation (Amigun et al. 2011) and greenhouse gas (GHG) emissions compared 
to fossil fuels (Muok et al. 2010). The challenge is to identify appropriate management 
practices and incentives. In addition, environmental monitoring programs should be 
established across fuel sheds in order to understand environmental effects of biofuel 
operations and to guide adaptive management.

There are four means by which terrestrial feedstock production can be increased: 
expansion of land area used to grow biomass, increases in crop yields, use of wastes 
and residues as feedstocks, and increases in system efficiency. This chapter deals 
largely with the effects of expansion of the land area planted to biofuel feedstocks, 
which has the largest impact on biodiversity. The chapter also focuses on proactive 
solutions that avoid or reduce impacts and enhance benefits. It does not consider 
feedstock production in aquatic systems (e.g., algal based biofuels) or feedstock and 
fuel transport, fuel production and end use of the fuel.  

16.2 Key Findings 
SCOPE’s first Rapid Assessment on Biofuels and the Environment (SCOPE 2009) 
concluded that “environmental consequences of biofuels depend on what crop 
materials are used, where and how these feedstocks are grown, how the biofuel is 
produced and used, and how much is produced and used. Effects on the environment 
are both positive and negative” (Howarth et al. 2009). This 2014 SCOPE assessment 
concurs with that general statement and offers options whereby the negative effects of 
biofuel production on biodiversity and ecosystem services can be avoided or reduced 
and positive effects enhanced by attention to three guiding principles:

●● Identification and conservation of priority biodiversity areas are paramount;

●● Effects of biofuel feedstock production on biodiversity and ecosystem services 
are context specific; and,

●● Location-specific management of biofuel feedstock production systems should 
be implemented to maintain biodiversity and ecosystem services. 

This chapter considers these guiding principles independently even though they are 
clearly related (e.g., conservation areas must be established within particular contexts, 
and both conservation areas and their adjacent lands should be managed appropriately).

16.2.1 Identification and Conservation of 
Priority Biodiversity Areas are Paramount
Biodiversity is the basis for ecosystem services and the foundation for sustainable 
development. It plays fundamental roles in maintaining and enhancing the wellbeing of 
the world’s 7 billion people, rich and poor, rural and urban (UNEP 2009). Expansion of 



558

chapter 16  
Biofuel Impacts on Biodiversity and Ecosystem Services

Bioenergy & Sustainability

any human activities is the most serious threat to biodiversity, and the rapid expansion 
of biofuel crops raises a serious concern but also can address some problems. The 
maps in Figure 16.1 depict areas on the Earth of greatest biodiversity concern and 
where biofuel feedstocks are likely to overlap them. 

Preserving biodiversity hotspots is of paramount importance. Conservation is 
particularly important in the moist tropics, for loss of primary tropical forests is the 
greatest threat to biodiversity (Gibson et al. 2011). The global network of nearly 133,000 
protected areas covers 25.8 million km2, approximately 12% of the terrestrial surface 
(Butchart et al. 2010), an order of magnitude larger than the area currently occupied by 
biofuel crops. Even so, the network of protected areas does not adequately represent 
biodiversity, areas of cultural importance, or all ecosystems of value. Maintaining the 
existing protected areas and establishing new ones require systematic and science-
based conservation planning (Margules and Pressey 2000) and effective management 
and governance (Sodhi et al. 2013) to ensure sustainable and persistent matrices of 
biodiversity corridors and ecosystem service linkages. 

16.2.1.1 Effects of Feedstock Production on Biodiversity 
and Ecosystem Services are Context Specific
The effects of feedstock production on biodiversity are specific to the biome, site conditions 
and characteristics of the production system. Context considerations include the particular 
fuel production and distribution system, policies, stakeholders and their values, and 
baseline soil, water, air, biodiversity and ecosystem conditions (Efroymson et al. 2013). For 
example, changes in greenhouse gas emissions relate to feedstock type and soil conditions 
as well as prior and current management practices (e.g., Castanheira and Freire 2013). 

There are contexts in which well-designed deployment of biofuels enhances biodiversity 
and ecosystem services and other systems where biofuels reduce biodiversity and the 
benefits of ecosystem services. For example, biofuel-mediated improvements occur where 
degraded lands are rehabilitated with native or non-invasive, non-native feedstocks, and 
detriments occur where areas of high diversity value are converted to monocultures of a 
feedstock that eliminates native species or critical habitats. The challenge is to figure out how 
to deploy biofuels in a way that maintains or enhances biodiversity and ecosystem services. 
Effective deployment is facilitated by governance systems that support conservation of 
resources, protection of rare species, and enhancement of ecosystem services.  

Environmental effects of biofuels should be considered in relation to energy and land-
use practices that occur in the absence of their use. The displacement of fossil fuel use 
can reduce soil subsidence (Morton et al. 2006) and land-use changes associated with 
exploration and extraction of fossil fuels (Finer and Orta-Martinez 2010) that impact 
biodiversity. Furthermore, risk of environmental catastrophes that affect biodiversity is 
much less for biofuels than for fossil fuels, which involve exploration and extraction in 
relatively untouched environments such as deep seas and arctic regions (Chilingar and 
Endres 2005; Parish et al. 2013; Butt et al. 2013). 
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Figure 16.1.  Terrestrial species distribution (number of species per ecoregion) compared with 
distribution of projected biofuel feedstock production areas circa 2030 (from Dale et al. in review). 
(a) Global area projected for near-term use of biomass resource areas for energy production 
compared to richness of terrestrial mammals, reptiles, amphibians, marine mammals and 
birds.  Biofuels generated from the land areas shown offer the opportunity to replace 50% of 
the estimated worldwide demand for liquid transportation fuel by 2030.  The species richness 
data was created by Butt et al. (2013) from the number of different species present in each 
ecoregion from the World Wildlife Fund’s (WWF’s) Wildfinder Database (http://worldwildlife.org/
pages/wildfinder), WWF Terrestrial Ecoregions of the World (TEOW) polygons, and the 2012 
IUCN Red List of Threatened Species datasets (http://www.iucnredlist.org/). The background 
map depicts point estimate counts of threatened species ranges at the center of each 0.1° grid 
cell. Details are shown for potential biomass production areas across a portion of (b) South 
America and (c) Southeast Asia where many threatened terrestrial and marine species may be 
affected. These same areas might see improvements in biodiversity conditions given proper 
resource management for sustainable biofuels production.  

http://worldwildlife.org/pages/wildfinder
http://worldwildlife.org/pages/wildfinder
http://www.iucnredlist.org/
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16.2.1.2 Location-Specific Management of Feedstock 
Production Systems should be Implemented to 
Maintain Biodiversity and Ecosystem Services  
While the biofuel industry can build on established good practices in forestry, 
agriculture, transport logistics, and refinery establishment and operation, some 
aspects of feedstock production and acquisition are unique. For example, 
collection of agriculture and forest residues as feedstock requires attention to 
other ecosystem services. Well-managed feedstock production systems should 
include environmentally sensitive, science-based planning for resource use such as 
integrated land management, buffers, intercropping, and appropriate application of 
fertilizers, herbicides and pesticides. Tradeoffs between environmental resources 
and energy production and use are inevitable and should be considered in 
developing management plans. For example, a monoculture can sequester carbon 
and increase biofuel production but might reduce or eliminate indigenous diversity if 
the feedstock species becomes invasive. Effects of increased energy crop cultivation 
on biodiversity depend on landscape structure, and impacts can often be tolerated if 
a minimum level of crop-type heterogeneity is retained (Engel et al. 2012). Adoption 
of more sustainable agricultural practices entails defining goals for sustainability 
within the particular context, developing easily measured indicators of sustainability 
and monitoring them over time, moving toward integrated agricultural systems, and 
offering incentives or imposing regulations to affect the behavior of land owners (Dale 
et al. 2013a; Verdade et al. 2014b; see also Chapter 13, this volume). 

16.2.2 Biofuel Feedstock Production 
Interactions with Biodiversity 
The choice of feedstock and its location and management is the first step in the biofuel 
supply system and has great implications for environmental effects. The use of crop, 
forest and urban wastes does not require any new land area. Residue removal can be 
done so as to reduce environmental impacts (e.g., Muth et al. 2012), and it supports 
the benefits of using biofuels to displace fossil fuels. 

16.2.2.1 Impacts of Land-Use Change and Production Intensification 
The expansion of feedstock production has been based on land-use change (LUC) 
or management intensification. These changes can occur in relatively undisturbed 
ecosystems (Fitzherbert et al. 2008), crop or managed forest lands (Scharlemann 
and Laurance 2008), or degraded lands (Plieninger and Gaertner 2011). Direct loss of 
biodiversity occurs if there is a concurrent loss of wildlife habitat.  Where feedstocks 
for biofuels are planted in pristine landscapes, biodiversity losses exceed positive 
impacts of biofuels production on biodiversity. However, benefits to biodiversity can 
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occur where feedstocks are planted on degraded land (see Table 16.1 and Harrison 
and Berenbaum 2013; Leal et al. 2013; Phalan et al. 2013). 

Effects of land changes due to biofuels should be considered in light of the particular 
context (Principle 2).  For example, biofuel-driven expansion of corn planting in the US 
results in lower landscape diversity, thereby decreasing biocontrol services by reducing 
the supply of natural enemies to nearby fields (Landis et al. 2008). But those land 
changes should be interpreted in the context of trends of reduction in farmland area 
since the 1970s (USDA 2009) - largely due to urbanization, which had a stronger impact 
on biodiversity than recent land and crop changes due to biofuels. Examples of the 
effects of biofuel feedstock crops on biodiversity with their relative guiding principle are 
presented in Table 16. 1 and discussed below. Greater feedstock productivity per area 
is achieved by intensification of agricultural or forestry practices by second cropping, 
increased planting density, fertilizer use, or irrigation (Fernando et al. 2010; Prins et al. 
2011).  It is important to mention in this context that some areas in the world (arid and 
semi-arid lands) are bound to face water shortage with the expansion of irrigation for 
food production and bioenergy crops as well. As with any system, misuse or overuse of 
chemicals can result in contamination of the biota and the physical environment (e.g., 
Meche et al. 2009; Schiesari and Grillitsch 2011). On the other hand, some perennial 
crops being used for biofuels feedstocks require less chemical application and enhance 
soil and water conditions as compared to prior agricultural use (Sarkar et al. 2011). 

In some circumstances, particular biofuel crops have a positive impact on biodiversity 
in relation to prior agricultural land uses (Milder et al. 2008; Parish et al. 2012). 
For example, perennial grasses used for biomass production can enhance avian 
species richness and abundance relative to avian diversity of corn fields in the US 
(Fletcher et al. 2011; Robertson et al. 2012, 2013). The benefits of perennial crops on 
biodiversity are enhanced when specific management practices are adopted such as 
avoiding harvest during nesting periods and promoting stream-side buffers (Principle 
3) (McLaughlin and Walsh 1998; Tolbert and Wright 1998; Tolbert 1998). Natural 
biocontrol is higher in perennial grasslands than in annual croplands, increases with 
the amount of perennial grassland in the surrounding landscape, and is negatively 
related to insecticide use across the Midwestern United States (Meehan et al. 2012). 
Hence strategically positioned, perennial bioenergy crops could reduce insect 
damage and insecticide use on adjacent crops (Meehan et al. 2012).

Effects on biodiversity of the use of forest residues for bioenergy depend on forest 
harvest operations (Principle 3). Woody residue feedstocks are typically tops of 
trees that have no other commercial value. It is advisable to avoid coarse woody 
debris (CWD) (snags and downed logs), which provide sites for breeding, foraging 
and basking for a variety of organisms (more details in Chapter 13, this volume). 
Best Management Practices (BMPs) have been developed for woody bioenergy 
feedstocks in order to protect wildlife (Rupp et al. 2012).  These practices suggest 
maintaining a diversity of age classes and stream-side buffers as well as harvesting 
at times that avoid nesting.
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Sugarcane plantations for ethanol and sugar production cover approximately 8 M ha in 
Brazil and might expand to 14 M ha by 2016 (UNICA 2008). Expansion is predominantly 
occurring on degraded exotic pastures in Southeastern Brazil and does have local 
impacts on water eutrophication and soil pollution (Principle 2) (Verdade et al. 2012). 
While some claim that subsequent indirect pressures may drive deforestation in the 
Amazon basin (Lapola et al. 2010) such indirect effects are unlikely in the near future in 
Brazil. Sugarcane is planted in only 0.4% of the Amazon, for it does not grow well there, 
and a new Brazilian law prevents sugarcane planting in sensitive areas (Martinelli 
and Filoso 2008) (supporting Principle 1). However, such land-use systems reinforce 
inequality in land ownership contributing to rural–urban migration that ultimately fuels 
haphazard expansion of urban areas (Lapola et al. 2013).

Oil palm crops currently occupy over 13.5 million ha of former extremely diverse moist 
tropical forest in Southeast Asia (Fitzherbert et al. 2008), mainly (80%) in Indonesia 
and Malaysia. Palm oil is mostly used for cooking oils and soaps, and some of the 
oil and production wastes are used for biofuel (Corley 2009). Hence only a portion of 
its impacts is attributable to biofuels. More than 50% of the recent (1990-2005) palm 
oil expansion is directly related to deforestation (Koh and Wilcove 2008, Sodhi et al. 
2010a). The rate of annual deforestation in Malaysia has been over 22,000 ha per year 
during the last three decades (Koh and Hoi 2003). Converting forests into palm oil crop 
is more profitable than preserving it for carbon credits traded in compliance markets 
(Butler et al. 2009). This trend is supported by the international market (Lenzen et al. 
2012) and might result in massive biodiversity loss (Sodhi et al. 2004) especially of 
forest birds (Sodhi et al. 2005). Palm oil plantations support only 38% of the vertebrate 
species found in primary forest (and only 23% found in primary forests and plantations) 
(Danielsen et al. 2009). The Roundtable on Sustainable Palm Oil requires that “high 
conservation value forest” not be cleared to plant oil palm (www.rspo.org) (Principle 
1). If this rule were rigorously implemented, the current rates of biodiversity loss in 
Southeast Asia would be greatly reduced.

The continuous increase in the supply and demand of cassava in developing countries 
has accentuated the negative impact cassava production and processing has had on 
the environment and biodiversity. The replacement of kerosene cooking fuel with ethanol 
produced from cassava in Nigeria requires the conversion of 400,000 ha of forest into 
farmland.  Also, large volumes of waste streams are generated including toxic cassava 
effluent and solid wastes containing cyanide (Ohimain 2013). Cassava expansion also 
contributes to soil erosion, depletion of soil nutrient supply, and loss of biodiversity. Losses 
can include wild Manihot species, which may be of future importance for the incorporation 
of favorable characteristics, such as disease tolerance, in cultivated cassava.

http://www.rspo.org
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16.2.2.2 Invasion of Exotic Species introduced 
through Biofuel Production Activities
Invasive species are associated with a variety of human activities and have driven 
many native species to extinction, altered the composition of ecological communities, 
changed patterns of periodical events, and altered ecosystem processes (Vitousek 
et al. 1987). Where nonnative plants are used as feedstocks, biofuel production may 
increase the risks and costs associated with invasive species as a direct consequence 
of the species and genotypes used to produce biofuels or of invasion of other taxa 
(Sala et al. 2009). This risk is relevant to both Africa (Blanchard et al. 2011, Witt 2010) 
and Europe (Genovesi 2010), where biofuel production is based on use of nonnative 
species. In some cases, however, introduced species used as feedstock provide 
habitat for native species (e.g., Eucalyptus and sugarcane, according to Dotta and 
Verdade 2011 and Gheler-Costa et al. 2012). The use of non-native species that 
have invasive characteristics requires adoption of specific management practices to 
reduce their potential for spread (Principle 3).

16.2.3 Ecosystem Services and Biofuel Feedstock Production 
Ecosystem services as defined and described in the Millennium Ecosystem 
Assessment (MA 2005) provide a useful conceptual framework for structuring this 
review of the environmental impacts of biofuels following the trans-disciplinary 
approach proposed by Gasparatos (2013). Table 16.2 provides example services 
and effects related to feedstock production for biofuels, which has direct influences 
on provisioning, regulating and supporting services. In addition to supplying food, 
crops like corn, wheat, and sugarcane can contribute to biofuel production and 
enhance soil, water, and air conditions. The potential role of sustainable biofuels in 
mitigating climate change is still debated (see Chapters 9 and 12, this volume). The 
unresolved question is how much change is attributable to biofuels versus to other 
products and as compared to other land or energy uses.

Table 16.2 provides examples of the effects that feedstock production for biofuels can 
have on different ecosystem services. Effects are context specific and depend on prior 
uses of the land as well as the degree to which fossil fuel use is offset. Feedstock 
production practices can enhance or degrade air and water quality, and thereby affect 
biodiversity, food security, and soil quality.

16.2.4 Mitigating Impacts of Biofuel Production 
on Biodiversity and Ecosystem Services
There are several measures for avoiding or reducing environmental impacts of biofuel 
expansion. First, land-use planning with clearly defined agricultural production zoning can 
limit the expansion of biofuel crops into pristine ecosystems. Spatial planning based on 
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Categories of 
Ecosystem 
Services 

Service 
types

Positive and negative effects

Provisioning Fuel Biofuels provide around 3% of the world’s fuel for transport and have 
potential for meeting a high proportion of liquid fuel needs in certain 
countries and regions.  (Brazil: 23%, United States: 4%, European 
Union: 3%). (http://www.iea.org/aboutus/faqs/renewableenergy/)

Food/ 
fodder

Most feedstocks used for first generation biofuels are food crops 
(Gasparatos.et.al, 2011)]

An important bi-product of biofuel production is food for animals 
(Dale et al. 2010a) 

Integrated systems can improve food production at the local level 
creating a positive influence on food security (Diaz-Chavez 2011)

Biofuel feedstock production replaced 1.6% of the cultivated land 
globally as of 2007 (Fischer et al. 2009) but provides a reason 
for retaining land in agriculture in the face of world-wide urban 
expansion, which has claimed a much larger area of farmland

Water 
quantity 
and  
quality

Some feedstocks are used to purify wastewater (Börjesson and 
Berndes 2006) and to restore contaminated aquifers and marginal 
lands (Gopalakrishnan et al. 2009)

When perennial feedstock crops replace annual crops, less 
fertilizer is used and deep roots reduce runoff (Achten et al. 2008; 
Gmunder et al. 2010; Dale et al. 2010b, Parish et al. 2012) 

Palm Oil Mill Effluent (POME) and sugarcane mill effluent are 
used for oil palm and sugarcane irrigation, respectively

Biofuel systems can degrade and exploit water quality and 
quantity (de Fraiture and Berndes 2009)

Where water is limited, the use of irrigation in feedstock 
production can deplete vulnerable aquifers (Chiu et al. 2009)

It can be more water-efficient to use biomass to produce 
bioelectricity than biofuels (Gerbens-Leenes et al. 2009)

Biofuel production can produce effluents with high toxicity and 
Biological Oxygen Demand (BOD) (Gasparatos et al. 2011)

The palm oil industry is a major source of water pollution in 
Malaysia (Muyibi et al. 2008)

POME has high levels of BOD [approximately 2.5–3 tonnes of 
POME per tonne of palm oil (Wu et al. 2010)]

Effluent from sugarcane mills is rich in BOD (12–13 liters of vinasse 
generated per liter of ethanol) (Martinelli and Filoso 2008) »»  

Table 16.2. Potential interactions with ecosystem services of production of terrestrial feedstock 
for biofuel (after Gasparatos et al. 2011).

http://www.iea.org/aboutus/faqs/renewableenergy/
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Categories of 
Ecosystem 
Services

Service 
types

Positive and negative effects

Provisioning 
(cont.)

Water 
quantity 
and  
quality 
(cont.)

Expansion of feedstock production in previously uncultivated 
land in Brazil increases use of chemical compounds that can 
elicit neurotoxic, reprotoxic, carcinogenic, or endocrine-disrupting 
effects in humans and wildlife (Schiesari and Grillitsch 2011)

Both nitrogen and phosphorus reduction can occur where 
lignocellulosic bioenergy feedstocks are grown that require 
little fertilizer and can absorb runoffs with their deep perennial 
rooting systems (Simpson et al. 2008, Almaraz et al. 2009, 
Parish et al. 2012)

Using perennials feedstocks, alternative rotation systems, and 
sustainable crop production (e.g., no-till farming, reduced use of 
fertilizer, and riparian buffers) can reduce both nutrient input and the 
transport of nutrients and sediments to waterways (Dale et al. 2010a, 
Costello et al. 2009)

Woody biomass-to-liquid production (BTL) may locally increase 
eutrophication and have subtle effects on acidification (Sunde et 
al. 2011)

Regulating Soil 
quality/ 
Erosion 
regulation

Jatropha can improve soil quality and control erosion on marginal 
lands (Achten et al. 2008; Gmunder et al. 2010)

Martinelli and Filoso (2008) in (Gasparatos et al. 2011) mention 
that sugarcane cultivation is a significant driver of soil erosion 
in Brazil 

Soybean cultivation for biodiesel in Argentina exhibits greater soil 
erosion potential and greater negative effect on soil nutrients than 
switchgrass (van Dam et al. 2009)

Smeets et al. (2008) suggest that leaving sugarcane residues on 
the field reduces erosion

Creating bio-energy plantations on degraded land can positively 
affect soil and biodiversity (Danielsen et al. 2009)

Growing switchgrass in the southern United States on land 
previously in pasture or annual crops reduces soil erosion (Parish 
et al. 2012)

Deep-rooted perennial bioenergy feedstocks in the tropics could 
enhance soil carbon storage by 0.5 to 1 metric tonne ha-1year-1 
on already cleared land (Fisher et al. 1994)

Annual exposure of bare soil rich in Al can result in contamination 
of freshwater fish (Meche et al. 2009)

Biofuels from crop residue can reduce soil carbon and increase 
CO2 emissions (Liska et al. 2014; see also Chapters 13 and 18, 
this volume)

»»  

»»  
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Categories of 
Ecosystem 
Services 

Service 
types

Positive and negative effects

Regulating 
(cont.)

Climate 
regulation

Sustainably produced biofuels substitute for fossil fuels and 
thereby contribute to mitigating climate change

Biofuel systems can emit significant amounts of GHGs during their 
whole life cycle depending on prior land use (Hess et al. 2009) 

Oil palm plantations are net carbon sinks and protect the soil if 
they are established on marginal crop/grassland (Danielsen et al. 
2009, Verwer et al. 2008)

Danielsen et al. (2009) calculated that depending on the forest 
clearing method used, it takes 75–93 years for an oil palm 
plantation to compensate the carbon lost during the conversion of 
the initial forest and 600 years if that happens on peatland

Georgescu et al. (2009) state that biofuel expansion in the US 
Corn Belt might affect regional climate as a result of conversion 
of land cover from one crop type to another and the associated 
changes in energy and moisture balance of the surface

Air quality Biofuel feedstock production can release Volatile Organic 
Compounds (VOCs) and NOx 

Use of cane for biofuels can reduce burning, which is a major 
source of particulate matter with aerodynamic diameter and 
Polycyclic Aromatic Hydrocarbons (PAHs) (Gasparatos et al. 
2011)

Introduction of biofuels in Brazil has contributed to improvements 
of air quality in the city of São Paulo (Goldemberg 2008)

Air pollution can result from biofuels production (Williams et al. 2009) 
including anthropogenic emissions of NH3 (Erisman et al. 2007)

Supporting Habitat Open habitats like sugarcane plantations attract species and 
migratory birds (Acevedo and Restrepo 2008)

Changing from annual crops to perennial energy crops on metal 
polluted soils increased soil invertebrate density (Hedde et al. 2013)

»»  

systematic conservation planning principles (Margules and Pressey 2000) can establish 
networks of sustainable protected areas (Principles 1 and 3). Secondly, wildlife friendly 
agricultural and forestry practices can be employed (Principle 3) as promoted by the 
work of FAO (2012) and the Forestry Guild (Forest Guild Biomass Working Group 2010, 
Forest Guild Pacific Northwest Biomass Working Group 2013, Forest Guild Southeast 
Biomass Working Group 2012). These approaches complement public policy (Charles 
et al. 2007, Lovett et al. 2011, Soderberg and Eckberg 2013) and market demands (Di 
Lucia 2010, Palmujoki 2009). However, both strategies depend on the implementation 
of a global network of long-term monitoring activities as discussed below.
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16.2.4.1 Zoning
Zoning for particular uses could be established in countries that allow such land 
management systems. Agricultural or forestry zoning for biofeedstock production should 
be based on edaphic and hydrological limitations (Lal 2008) as well as unsuitable areas 
(Groom et al. 2007; Joly et al. 2010). Almost all countries identify and have some protection 
of environmentally sensitive areas; however their level of protection varies greatly. For 
those countries that allow zoning, the steps are set forth below. For other places, voluntary 
market-based incentives for appropriate resource management may be effective. Giving 
value to clean water, clean air, and other ecosystem services encourages their protection 
(Buyx and Tait 2011). Financial incentives to reduce carbon emissions from deforestation 
and forest degradation (REDD) provide economic compensation for landowners (Butler 
et al. 2009; Visseren-Hamakers et al. 2012; Kileen et al. 2011; Chapter 13, this volume). 
Furthermore, zoning is supported by promoting sustainable development in countries 
where agricultural and feedstock production are expanding (Martinelli and Filoso 2008).

The first step in zoning is selecting areas needed to protect threatened species and 
sensitive ecosystems. Then locations for biofuel feedstocks can be identified within 
the context of other ecosystem services and the needs of society. Expansion of biofuel 
crops over degraded lands instead of pristine ecosystems and food croplands has 
advantages for sustainability and food security (Fitzherbert et al. 2008; Henneberg 
et al. 2009; Koh and Ghazoul 2010, Obidzinski et al. 2012; Plieninger and Gaertner 
2011; Ravindranath et al. 2011; Stoms et al. 2012; van Vuurven et al. 2009).  The 
characteristics of degraded lands and their management need to be defined in specific 
contexts (Li et al. 2010). The zoning system should be complemented by wildlife-
friendly management practices, as discussed below.

16.2.4.2 Wildlife Friendly Management Practices
Environmental impacts of agriculture and forestry can be mitigated by either improving 
or reducing productivity  (Green et al. 2005) or selectively using areas most suitable 
for agriculture or forest production (Dale et al. 2011) (more details in Chapter 13, this 
volume). The successful implementation of this approach results in concentrated highly 
productive crop fields or forests and more natural areas maintained for conservation 
(Koh et al. 2009; Koh and Ghazoul 2010; Buckeridge et al. 2012). Such agroecosystems 
or forest systems are part of a landscape matrix that includes conservation areas and 
corridors as well as secondary remnants of native vegetation with conservation value 
(Wiens et al. 2011; Ranghanatan et al. 2008; Smith et al. 2008; Smith and Gross 
2007; Metzger et al. 2010; Koh 2008). Attributing economic values for agroecosystems 
and forest systems counters pressure for land development [such as is occurring in 
the southeastern United States (USDA Forest Service 2012)] and thereby maintains 
or even expands the area in forest and croplands, which provides more ecosystem 
services than developed areas. Environmental certification can strengthen such 
strategies. (see Chapter 19, this volume).
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Retention of native vegetation within agricultural or forested landscapes (Principle 1) 
increases both the matrix permeability for specialist species and habitat quality per se 
thus enhancing landscape β-diversity (Verdade et al. 2014a). Hence, there are local 
improvements of ecosystem services (Gasparatos et al. 2011, George et al. 2012, Berry 
and Paterson 2009). Such a strategy builds multifunctionality of agricultural landscapes 
(Martinelli et al. 2010) including production of domestic species and conservation of 
wild species (Verdade et al. 2014a).  

16.2.4.3 Biodiversity and Environmental Monitoring 
Assessment of long-term effects of biofuels production on biodiversity requires a 
global monitoring network (Tilman et al. 2006; Sodhi et al. 2010a; FAO 2012; Dale and 
Kline 2013a; Verdade et al. 2014b). Such a program should feed into life-cycle impact 
assessments (LCA) of biofuel feedstocks and other crops and energy uses (Bare 2011; 
Markevicius et al. 2010; Reinherdt and von Falkenstein 2011); Weiss et al. 2012). An 
effective monitoring approach (e.g., Wilbur 1997) builds from use of targeted indicators 
(e.g., Scharlemann 2008). Environmental indicators of sustainability that should be 
monitored should reflect soil quality, water quality and quantity, greenhouse gases, 
biodiversity, air quality, and productivity (McBride et al. 2011).  Key socioeconomic 
indicators include measures of social well-being, energy security, trade, profitability, 
resource conservation, and social acceptability (Dale and Kline 2013b). Sampling 
procedures should be systematized to reduce methodological uncertainties (e.g., Gao 
et al. 2011; Magnusson et al. 2014). Databases generated by sampling sites within the 
global network should be interoperable in order to connect patterns of diversity with 
processes (Verdade et al. 2014b). Monitoring and analysis should feed into adaptive 
management (Lattimore et al. 2009). 

16.3 Conclusions
As with all land transformation activities, effects on biodiversity and ecosystem services 
of producing feedstocks for biofuel are highly variable and context specific. Advances 
toward more sustainable biofuel production benefit from a system’s perspective, 
recognizing spatial heterogeneity and scale, landscape-design principles, and addressing 
the influences of context, such as the particular products and their distribution, policy 
background, stakeholder values, location, temporal influences, and baseline conditions. 
Good governance, strong institutions, market based voluntary certification, and access 
to information about appropriate management strategies and tactics all support 
sustainable resource use and management that can benefit biodiversity. Developing 
those management strategies takes time and effort. In summary, the negative effects of 
production of feedstocks for biofuel can be avoided or reduced by conservation of priority 
biodiversity areas, recognizing the context specific effects of feedstock production, and 
adopting location-specific management of production systems.
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16.4. Recommendations
Agroecological zoning principles and enforcement is of paramount importance to 
impede the conversion of ecologically significant and sensitive areas for biodiversity and 
ecosystem services protection into producing feedstocks for biofuel. Good governance 
and strong institutions are the most critical determinants of sustainable land use, 
especially in terms of biodiversity. Without good governance, biofuels expansion will 
lead to environmental and social loss. As a highly sophisticated, innovative and efficient 
industry, biofuels can be part of the solution, not part of the problem.
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