Skip to main content

economic

Land-use change (LUC) estimated by economic models has sparked intense international debate. Models estimate how much LUC might be induced under prescribed scenarios and rely on assumptions to generate LUC values. It is critical to test and validate underlying
assumptions with empirical evidence. Furthermore, this modeling approach cannot answer if any specific indirect effects are actually caused by biofuel policy. The best way to resolve questions of causation is via scientific methods. Kim and Dale attempt to address the question of if, rather than how much, market-induced land-use change is currently detectable based on the analysis of historic evidence, and in doing so, explore some modeling assumptions behind the drivers of change. Given that there is no accepted approach to estimate the global effects of biofuel policy on land-use change, it is critical to assess the actual effects of policies through careful analysis and interpretation of empirical
data. Decision makers need a valid scientific basis for policy decisions on energy choices.

Contact Phone
Publication Year
Contact Email
dalevh@ornl.gov
Contact Person
Virginia Dale
Contact Organization
Oak Ridge National Laboratory
Bioenergy Category
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The U.S. biomass resource can be used several ways that provide domestic, renewable energy to users. Understanding the capacity of the biomass resource, its potential in energy markets, and the most economic utilization of biomass is important in policy development and project selection. This study analyzed the potential for biomass within markets and the competition between them. The study found that biomass has the potential to compete well in the jet fuel and gasoline markets, penetration of biomass in markets is likely to be limited by the size of the resource, and that biomass is most cost effectively used for fuels instead of power in mature markets unless carbon capture and sequestration is available and the cost of carbon is around $80/metric ton CO2e.
 
Biomass Utilization Issues
Biomass is a limited resource with many competing uses. Its allocation for fuel, power, and products depends upon characteristics of each of these markets, their interactions, and policies affecting these markets. In order to better understand competition for biomass among markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, the Transportation Energy Futures (TEF) study created a unique modeling tool to analyze the impact of these multiple demand areas.
 
There are compelling reasons for use of biomass in each of these three markets:
• Fuel: Biomass is the primary renewable resource that can be used to generate liquid fuels for today’s vehicles and infrastructure.
• Power: Technology is currently available to enable co-firing with coal, reducing the carbon intensity of baseload electricity and providing one of the few renewable dispatchable options.
• Products: Mixtures of chemicals with carbon-hydrogen-oxygen bonds such as those found in biomass are too valuable to burn.
 
Federal policy and activities have supported both biofuels and biopower. Relevant policies include the renewable fuels standard, the renewables portfolio standard, the clean energy standard, and many state and regional greenhouse gas (GHG) policies. Goals for biofuel policies include reduction in petroleum and, especially, petroleum imports to increase energy security. Other goals for biofuel policies focus on environmental and economic concerns, GHG emissions reduction, and diversification of agricultural products. Goals for biopower policies include displacement of coal for environmental concerns and GHG reduction. In the past two decades, the U.S. Department of Energy’s research and development (R&D)

Organization
Lab
Bioenergy Category

Indicators are needed to assess both socioeconomic and environmental sustainability of bioenergy systems. Effective indicators can help to identify and quantify the sustainability attributes of bioenergy options. We identify 16 socioeconomic indicators that fall into the categories of social well-being, energy security, trade, profitability, resource conservation, and social acceptability. The suite of indicators is predicated on the existence of basic institutional frameworks to provide governance, legal, regulatory and enforcement services. Indicators were selected to be practical, sensitive to stresses, unambiguous, anticipatory, predictive, estimable with known variability, and sufficient when considered collectively. The utility of each indicator, methods for its measurement, and applications appropriate for the context of particular bioenergy systems are described along with future research needs. Together, this suite of indicators is hypothesized to reflect major socioeconomic effects of the full supply chain for bioenergy, including feedstock production and logistics, conversion to biofuels, biofuel logistics and biofuel end uses. Ten indicators are highlighted as a minimum set of practical measures of socioeconomic aspects of bioenergy sustainability. Coupled with locally prioritized environmental indicators, we propose that these socioeconomic indicators can provide a basis to quantify and evaluate sustainability of bioenergy systems across many regions in which they will be deployed.

Publication Year
Contact Email
dalevh@ornl.gov
Contact Person
Virginia Dale
Contact Organization
Oak Ridge National Laboratory
Bioenergy Category
Author(s)
Virginia H. Dale

Provides a summary of the key findings of the IPCC Special Report on Renewable Energy Sources (SRREN) and Climate Change Mitigation.

Lab
Contact Email
ethan.warner@nrel.gov
Contact Person
Ethan Warner
Contact Organization
National Renewable Energy Laboratory
Bioenergy Category

The IPCC SRREN report addresses information needs of policymakers, the private sector and civil society on the potential of renewable energy sources for the mitigation of climate change, providing a comprehensive assessment of renewable energy technologies and related policy and financial instruments. The IPCC report was a multinational collaboration and synthesis of peer reviewed information: Reviewed, analyzed, coordinated, and integrated current high quality information. The OBP International Sustainability activities contributed to the Bioenergy chapter, technology cost annex as well as lifecycle assessments and sustainability information.

Contact Email
ethan.warner@nrel.gov
Subscribe to economic