Skip to main content

land use change

The estimation of greenhouse gas (GHG) emissions from a change in land-use and management resulting from growing biofuel feedstocks has undergone extensive – and often contentious – scientific and policy debate. Emergent renewable fuel policies require life cycle GHG emission accounting that includes biofuel-induced global land-use change (LUC) GHG emissions. However, the science of LUC generally, and biofuels-induced LUC specifically, is nascent and underpinned with great uncertainty. We critically review modeling approaches employed to estimate biofuel-induced LUC and identify major challenges, important research gaps, and limitations of LUC studies for transportation fuels. We found LUC modeling philosophies and model structures and features (e.g. dynamic vs. static model) significantly differ among studies. Variations in estimated GHG emissions from biofuel-induced LUC are also driven by differences in scenarios assessed, varying assumptions, inconsistent definitions (e.g. LUC), subjective selection of reference scenarios against which (marginal) LUC is quantified, and disparities in data availability and quality. The lack of thorough sensitivity and uncertainty analysis hinders the evaluation of plausible ranges of estimates of GHG emissions from LUC. The relatively limited fuel coverage in the literature precludes a complete set of direct comparisons across alternative and conventional fuels sought by regulatory bodies and researchers.

Improved modeling approaches, consistent definitions and classifications, availability of high-resolution data on LUC over time, development of standardized reference and future scenarios, incorporation of non-economic drivers of LUC, and more rigorous treatment of uncertainty can help improve LUC estimates in effectively achieving policy goals.


Bioenergy Category

The major opportunities to reduce fossil carbon dioxide (CO2) emissions involve improving the efficiency with which energy is used and making the transition to alternative sources of energy and materials. These include increasing the sustainable use of biomass for the production of biomaterials, heat and power, and for transport. Two recent reports* concluded that, when responsibly developed, bioenergy can make an important contribution to energy and climate policy, and can also contribute to social and economic development objectives. Even so, there is still an ongoing discussion about the role of sustainable bioenergy in the future. This concerns both environmental and socio-economic aspects, and involves a wide set of issues and many contrasting viewpoints.This report discusses one much-debated issue, the connection between bioenergy and Land Use Change (LUC) and especially whether there is a risk that Greenhouse Gas (GHG) emissions associated with LUC could significantly undermine the climate change mitigation benefits of bioenergy, and how this risk can be minimised.

Bioenergy Category

EXECUTIVE SUMMARY: Life cycle assessment (LCA) is a powerful tool that may be used to quantify the environmental impacts of products and services. It includes all processes, from cradle-to-grave, along the supply chain of the product. When analysing energy systems, greenhouse gas (GHG) emissions (primarily CO2, CH4 and N2O) are the impact of primary concern. In using LCA to determine the climate change mitigation benefits of bioenergy, the life cycle emissions of the bioenergy system are compared with the emissions for a reference energy system. The selection of reference energy system can strongly affect the outcome.
When reviewing the literature one finds large ranges of GHG emissions per unit of energy from LCA studies of similar bioenergy systems. The differences occur for a multitude of reasons including differences in technologies, system boundaries, and reference systems. Some studies may be incomplete in that the bioenergy system and reference system provide different services. Others may omit some sources of emissions (e.g. land use change).
This paper discusses key criteria for comprehensive LCAs based on IEA Bioenergy Task 38 case studies. LCAs of the GHG balance of four different bioenergy systems and their counterpart reference system are highlighted using the case study examples.
The first example investigates heat production from woody biomass and grasses. This study shows that the emissions saved for the same type of service can vary due to the source of the biomass. The bioenergy systems studied reduce GHG emissions by 75-85% as compared to the counterpart reference systems.
In the second example, electricity is produced from woody biomass using two different technologies with different efficiencies. Depending on the technology, the biomass must
be transported different distances. The example illustrates the importance of the efficiency of the system and the small impact of soil organic carbon (SOC) decline in comparison
with emissions saved. Since the bioenergy systems include carbon sequestration, they reduce GHG emissions by 108-128% as compared to the counterpart reference systems.
A biogas plant providing combined heat and power is analysed in the third example, which illustrates the importance of finding a beneficial use for the heat produced, and of controlling fugitive emissions. In the optimal configuration of closed storage and maximised use of heat, the biogas system reduces emissions by 71% as compared to the counterpart reference system. This reduction decreases to 44% when the heat is not fully used and to only 27% if fugitive emissions are not controlled.
In the final example the bioenergy system provides biodiesel for transport. This example demonstrates the importance of the use of co-products, as the same bioenergy chain produces very different emissions savings per kilometre depending on whether the co-product is used as a material or combusted for energy. Compared to the reference system, the bioenergy system reduce GHG emissions by 18% and 42% when the co-products are used for energy or materials respectively.
Similar to the case studies presented here, published studies find that GHG mitigation is greater where biomass is used for heat and electricity applications rather than for liquid transport fuels. Overall, the emissions savings from bioenergy systems tend to be similar to that of other renewable energy sources.

Recent legislative mandates have been enacted at state and federal levels with the purpose of reducing life cycle greenhouse gas (GHG) emissions from transportation fuels. This legislation encourages the substitution of fossil fuels with ‘low-carbon’ fuels. The burden is put on regulatory agencies to determine the GHG-intensity of various fuels, and those agencies naturally look to science for guidance. Even though much progress has been made in determining the direct life cycle emissions from the production of biofuels, the science underpinning the estimation of potentially signifi cant emissions from indirect land use change (ILUC) is in its infancy. As legislation requires inclusion of ILUC emissions in the biofuel life cycle, regulators are in a quandary over accurate implementation. In this article, we review these circumstances and offer some suggestions for how to proceed with the science of indirect effects and regulation in the face of uncertain science. Besides investigating indirect deforestation and grassland conversion alone, a more comprehensive assessment of the total GHG emissions implications of substituting biofuels for petroleum needs to be completed before indirect effects can be accurately determined. This review fi nds that indirect emissions from livestock and military security are particularly important, and deserve further research. © 2009 Society of Chemical Industry and John Wiley & Sons, Ltd

Bioenergy Category
Subscribe to land use change