Skip to main content

Supporting Data

Simulations under this dataset were targeted to a specific fuelshed in Iowa.
Integrated land management (ILM) applications were targeted under this research, although the results of these simulations are at the county level; downscaling post-processing will be applied.

Keywords
Usage Policy
Please use the citation
Publication Year
Organization
Lab
DOI
10.11578/1797943
Data Source
Budgets are consistent with BT16 (DOE 2016)
Author
Maggie R. Davis
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Short Rotation Woody Crop Production Scenarios Simulated for Idaho National Laboratory-ORNL Collaborations, June 2021.

Phone
Usage Policy
Please use the citation
Publication Year
Organization
Lab
Email
davismr@ornl.gov
DOI
10.11578/1797939
Data Source
Budgets are consistent with BT16 (DOE 2016) and Pine/Poplar allocation used the highest yield for those crops from https://public.tableau.com/app/profile/eatonlm/viz/SGI_yields/PotentialYieldOverview
Contact Person
Maggie Davis
Contact Organization
Oak Ridge National Lab
Author
Maggie R. Davis

The economic potential for Eucalyptus spp. production for jet fuel additives in the United States: A 20 year projection suite of scenarios ranging from $110 Mg-1 to $220 Mg-1 utilizing the POLYSYS model.

Phone
Publication Year
Project Title
The economic potential for Eucalyptus spp. production for jet fuel additives in the United States
Organization
Lab
Email
davismr@ornl.gov
Contact Person
Maggie R. Davis
Contact Organization
ORNL
Author
Maggie R. Davis

Link to the website with documentation and download instructions for the PNNL Global Change Assessment Model (GCAM), a community model or long-term, global energy, agriculture, land use, and emissions. BioEnergy production, transformation, and use is an integral part of GCAM modeling and scenarios.

http://jgcri.github.io/gcam-doc/

Phone
Publication Year
Project Title
GCAM Bioenergy and Land Use Modeling
Lab
Email
marshall.wise@pnnl.gov
Contact Person
Marshall Wise
Contact Organization
PNNL
Author
Marshall Wise
WBS Project Number
4.1.2.50 NL0022708
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Price Scenarios at $54 and $119 were simulated for Switchgrass, Miscanthus and Willow production from 2017 to 2040. These analyses will be used in a subsequent publication.

Phone
Usage Policy
Any use of this data should cite associated DOI.
Publication Year
Email
davismr@ornl.gov
DOI
10.11578/1468424
Data Source
Internal Simulations using POLYSYS
Contact Person
Maggie Davis
Contact Organization
ORNL
Author
Maggie R. Davis

This dataset was utilized in a report to highlight parameters that affect near-term sustainable supply of corn stover and forest resources at $56 and $74 per dry ton delivered. While the report focus is restricted to 2018, the modeling runs are available from 2016-2022. In the 2016 Billion-ton Report (BT16), two stover cases were presented. In this dataset, we vary technical levels of those assumptions to measure stover supply response and to evaluate the major determinants of stover supply. In each of these cases, the supply is modeled first at the farmgate at prices up to $80 per dry ton for five deterministic scenarios. Building on this dataset, a supplementary dataset of delivered supply was modeled for 800k dry ton per year capacity facilities in two facility siting approaches. Results were summarized across delivered supply curves for twelve scenarios. The resulting supply curves are highly elastic, resulting in a range of potential supplies across scenarios at specified prices. Interactive visualization of these data allows exploration into any specified nth plant supply sensitivity to key variables and spatial distribution of stover resources.

The analysis is economic supply risk and doesn’t account for disruptions from competing demands, namely livestock feed and bedding markets.

Phone
Usage Policy
Any use of this data should cite associated DOI
Publication Year
Project Title
Supply Scenario Analysis
Email
davismr@ornl.gov
Attachment
DOI
10.11578/1467581
Data Source
Internal Simulations using POLYSYS
Contact Person
Maggie Davis
Contact Organization
ORNL
Author
Maggie Davis , Laurence Eaton , Matt Langholtz
WBS Project Number
1.1.1.3.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This spreadsheet serves as an Input file to the National Renewable Energy Laboratory's Waste-to-Energy System Simulation (WESyS) model developed in Stella Pro (isee systems, Lebanon, NH). WESyS is a national-level system dynamics model that simulates energy production from three sectors of the U.S. waste-to-energy industry: landfills, confined animal feeding operations (CAFOs), and publically owned treatment works (POTWs).

For our purposes, a scenario is a set of model conditions (i.e. parameter settings) that approximate a specified condition or potential reality. The RIN/LCFS scenario represents biofuel production incentives from both the Renewable Fuel Standard (RFS) and the Low-Carbon Fuel Standard (LCFS). To implement this scenario, we modified the model structure to 1) accept time series data that represent the production incentives from the Renewable Identification Number (RIN) market and 2) mimic the low carbon fuel standard credit calculations. For both of these programs, the incentive is accrued at the point of production.

Phone
Keywords
Publication Year
Project Title
Waste-to-Energy System Simulation Model
Email
daniel.inman@nrel.gov
Attachment
Contact Person
Daniel Inman
Contact Organization
National Renewable Energy Laboratory
Bioenergy Category
Author
Daniel Inman, Annika Eberle, and Dylan Hettinger of the National Renewable Energy Laboratory; Steven Peterson and Corey Peck of Lexidyne, LLC.
WBS Project Number
2.1.0.104
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This spreadsheet serves as an Input file to the National Renewable Energy Laboratory's Waste-to-Energy System Simulation (WESyS) model developed in Stella Pro (isee systems, Lebanon, NH). WESyS is a national-level system dynamics model that simulates energy production from three sectors of the U.S. waste-to-energy industry: landfills, confined animal feeding operations (CAFOs), and publically owned treatment works (POTWs).

For our purposes, a scenario is a set of model conditions (i.e. parameter settings) that approximate a specified condition or potential reality. The rate-based development scenario outlined here represents the ability of publically owned treatment works (POTWs) to take advantage of rate of return regulation to recover the cost of capital associated with the development of waste-to-energy facilities (i.e., POTWs can recover costs by increasing the rates that they charge their customers for water treatment). Under rate-based financing, there is a tendency to invest in the most expensive technology. This is a well-recognized drawback of using a rate-based mechanism to cover capital investment. In California, recommendations have been made to limit rate-base increases to finance projects that directly tie into a state goal and increase demand for electricity. As a result, we limited the rate-based option to be available only to California wastewater treatement plants investing in electricity generation.

Phone
Keywords
Publication Year
Project Title
Waste-to-Energy System Simulation Model
Email
daniel.inman@nrel.gov
Contact Person
Daniel Inman
Contact Organization
National Renewable Energy Laboratory
Bioenergy Category
Author
Daniel Inman, Annika Eberle, and Dylan Hettinger of the National Renewable Energy Laboratory; Steven Peterson and Corey Peck of Lexidyne, LLC.
WBS Project Number
2.1.0.104
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This spreadsheet serves as an Input file to the National Renewable Energy Laboratory's Waste-to-Energy System Simulation (WESyS) model developed in Stella Pro (isee systems, Lebanon, NH). WESyS is a national-level system dynamics model that simulates energy production from three sectors of the U.S. waste-to-energy industry: landfills, confined animal feeding operations (CAFOs), and publically owned treatment works (POTWs).

For our purposes, a scenario is a set of model conditions (i.e. parameter settings) that approximate a specified condition or potential reality. The non-negative feedstock cost scenario outlined here represents a potential future reality where feedstock costs for waste become positive (i.e., there is a market for wastes). For the three types of facilities represented in WESyS (i.e., wastewater treatment plants, landfills, and concentrated animal feeding operations (CAFOs)), only CAFOs are expected to have positive feedstock costs for manure in the near future. If this were to happen, CAFOs might chose to sell their waste rather than build on-site waste-to-energy (WTE) facilities. For this scenario, we adopted a farmer-owned cooperative model in which farmers may sell their manure to a cooperatively owned and operated WTE facility. For these farmer-owned cooperatives, we have allow for technology development under three pathways (Hydrothermal Liquifaction (HTL), Fischer-Tropsch (FT), and Renewable Natural Gas (RNG)) that are assumed to operate at full commercial scale. For a given technology pathway to become feasible, there must be enough animal units available to supply the commercial throughput requirement of the technology.

Phone
Publication Year
Project Title
Waste-to-Energy System Simulation Model
Email
daniel.inman@nrel.gov
Contact Person
Daniel Inman
Contact Organization
National Renewable Energy Laboratory
Bioenergy Category
Author
Daniel Inman, Annika Eberle, and Dylan Hettinger of the National Renewable Energy Laboratory; Steven Peterson and Corey Peck of Lexidyne, LLC.
WBS Project Number
2.1.0.104
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This spreadsheet serves as an Input file to the National Renewable Energy Laboratory's Waste-to-Energy System Simulation (WESyS) model developed in Stella Pro (isee systems, Lebanon, NH). WESyS is a national-level system dynamics model that simulates energy production from three sectors of the U.S. waste-to-energy industry: landfills, confined animal feeding operations (CAFOs), and publically owned treatment works (POTWs).

For our purposes, a scenario is a set of model conditions (i.e. parameter settings) that approximate a specified condition or potential reality. For the landfill diversion scenario outlined here, we examined California Senate Bill 1383, which sets forth a timeline for diversion of organic wastes from landfills. This scenario is only applied to the California landfill (CA LF) and California wastewater treatement plant (CA WWTP) modules. For this scenario, we modified the model to perform a set of calculations that reduce the amount of organic waste (in tons per year) based on the SB 1383 timeframe – 50% by 2020, 75% by 2025 and the total amount of waste and organics that went to California landfills in 2014. We also assumed that all waste diverted from landfills would go to wastewater treatment plants.

Phone
Publication Year
Project Title
Waste-to-Energy System Simulation Model
Email
daniel.inman@nrel.gov
Contact Person
Daniel Inman
Contact Organization
National Renewable Energy Laboratory
Bioenergy Category
Author
Daniel Inman, Annika Eberle, and Dylan Hettinger of the National Renewable Energy Laboratory; Steven Peterson and Corey Peck of Lexidyne, LLC.
WBS Project Number
2.1.0.104
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.
Subscribe to Supporting Data