Skip to main content

Renewable Hydrocarbons

Potential Avenues for High Biofuels Penetration in the U.S. Aviation Market, Supplemental Tableau Workbook, 2016
Emily Newes, National Renewable Energy Laboratory Jeongwoo Han, Argonne National Laboratory Steve Peterson, Lexidyne LLC

Publication Year
Contact Email
enewes@nrel.gov
Contact Person
Emily Newes
Contact Organization
NREL
Bioenergy Category
Author(s)
Newes, Emily

Direct catalytic conversion of ethanol to hydrocarbon blend-stock can increase biofuels use in current vehicles beyond the ethanol blend-wall of 10–15%. Literature reports describe quantitative conversion of ethanol over zeolite catalysts but high C2 hydrocarbon formation renders this approach unsuitable for commercialization. Furthermore, the prior mechanistic studies suggested that ethanol conversion involves endothermic dehydration step. Here, we report the complete conversion of ethanol to hydrocarbons over InV-ZSM-5 without added hydrogen and which produces lower C2 (<13%) as compared to that over H-ZSM-5. Experiments with C2H5OD and in situ DRIFT suggest that most of the products come from the hydrocarbon pool type mechanism and dehydration step is not necessary. Thus, our method of direct conversion of ethanol offers a pathway to produce suitable hydrocarbon blend-stock that may be blended at a refinery to produce fuels such as gasoline, diesel, JP-8, and jet fuel, or produce commodity chemicals such as BTX.

Publication Year
Contact Email
narulack@ornl.gov
Contact Person
Chaitanya K. Narula
Contact Organization
Oak Ridge National Laboratory
Bioenergy Category
Author(s)
Chaitanya K. Narula
Subscribe to Renewable Hydrocarbons