Skip to main content

KDF Search Results

Displaying 1 - 20 of 35

The biobased economy is playing an increasingly important role in the American economy.

Through innovations in renewable energies and the emergence of a new generation of biobased products, the sectors that drive the biobased economy are providing job creation and economic growth. To further understand and analyze trends in the biobased economy, this report compares 2011 and 2016 report data.

Organization:
USDA
Author(s):
Jay S. Golden , Robert Handfield , Janire Pascual-Gonzalez , Ben Agsten , Taylor Brennan , Lina Khan , Emily True

Social and economic indicators can be used to support design of sustainable energy systems. Indicators representing categories of social well-being, energy security, external trade, profitability, resource conservation, and social acceptability have not yet been measured in published sustainability assessments for commercial algal biofuel facilities.

Organization:
DOE
Author(s):
Rebecca A. Efroymson , Virginia H. Dale , Matthew H. Langholtz
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Eucalyptus is a fast-growing tree native to Australia and could be used to supply biomass for bioenergy and other purposes along the coastal regions of the southeastern United States (USA). At a farmgate price of $66 dry Mg−1, a potential supply of 27 to 41.3 million dry Mg year−1 of Eucalyptus could be produced on about 1.75 million ha in the southeastern USA. A proposed suite of indicators provides a practical and consistent way to measure the sustainability of a particular situation where Eucalyptus might be grown as a feedstock for conversion to bioenergy.

Author(s):
Dale, Virginia , Matthew H. Langholtz , Beau M. Wesh , Laurence M. Eaton

Agricultural sustainability considers the effects of farm activities on social, economic, and environmental conditions at local and regional scales. Adoption of more sustainable agricultural practices entails defining sustainability, developing easily measured indicators of sustainability, moving toward integrated agricultural systems, and offering incentives or imposing regulations to affect farmer behavior.

Author(s):
Virginia H. Dale , Keith L. Kline , Stephen R. Kaffka , J. W. A. (Hans) Langeveld

Landscape implications of bioenergy feedstock choices are significant and depend on land-use practices and their environmental impacts. Although land-use changes and carbon emissions associated with bioenergy feedstock production are dynamic and complicated, lignocellulosic feedstocks may offer opportunities that enhance sustainability when compared to other transportation fuel alternatives.

Author(s):
Virginia H. Dale

United States is experiencing increasing interests in fermentation and anaerobic digestion processes for the production of biofuels. A simple methodology of spatial biomass assessment is presented in this paper to evaluate biofuel production and support the first decisions about the conversion technology applications. The methodology was applied to evaluate the potential biogas and ethanol production from biomass in California and Washington states. Solid waste databases were filtered to a short list of digestible and fermentable wastes in both states.

Author(s):
U. Zaher

In recent years, considerable concern has been raised about the sustainability of the world's forested ecosystems (FAO, 2003). With deforestation rates in tropical regions estimated to be as high as 12 million hectares per year (FAO, 2003; Houghton, 2003), much of the concern has centered around tropical deforestation. In contrast to these developments in tropical areas, there is evidence that the area of forests in temperate regions is expanding.

Author(s):
Sohngen,Brent

The Center for Sustainability and the Global Environment (SAGE) at the University of Wisconsin has been developing global databases of contemporary and historical agricultural land use and land cover. SAGE has chosen to focus on agriculture because it is clearly the predominant land use activity on the planet today, and provides a vital service?i.e., food?for human societies. SAGE has developed a ?data fusion?

Author(s):
Monfreda, Chad

The preceding two chapters of this volume have discussed physical and economic data bases for global agriculture and forestry, respectively. These form the foundation for the integrated, global land use data base discussed in this chapter. However, in order to utilize these data for global CGE analysis, it is first necessary to integrate them into a global, general equilibrium data base. This integration is the subject of the present chapter

Author(s):
Huey-Lin Lee

The harvest of corn stover or herbaceous crops as feedstocks for bioenergy purposes has been shown to have significant benefits from energy and climate change perspectives. There is a potential, however, to adversely impact water and soil quality, especially in Midwestern states where the biomass feedstock production would predominantly occur.

Author(s):
Nelson, Richard

National interests in greater energy independence, concurrent with favorable market forces, have driven increased production of corn-based ethanol in the United States and research into the next generation of biofuels. The trend is changing the national agricultural landscape and has raised concerns about potential impacts on the nation?s water resources. This report examines some of the key issues and identifies opportunities for shaping policies that help to protect water resources.

Author(s):
Schnoor, Jerald

The paper describes the on-going project of the GTAP land use data base. We also present the GTAPE-AEZ model, which illustrates how land use and land-based emissions can be incorporated in the CGE framework for Integrated Assessment (IA) of climate change policies. We follow the FAO fashion of agro-ecological zoning (FAO, 2000; Fischer et al, 2002) to identify lands located in six zones. Lands located in a specific AEZ have similar (or homogenous) soil, landform and climatic characteristics.

Author(s):
Lee, Huey-Lin

Power generation emits significant amounts of greenhouse gases (GHGs), mainly carbon dioxide (CO2). Sequestering CO2 from the power plant flue gas can significantly reduce the GHGs from the power plant itself, but this is not the total picture. CO2 capture and sequestration consumes additional energy, thus lowering the plant's fuel-to-electricity efficiency. To compensate for this, more fossil fuel must be procured and consumed to make up for lost capacity.

Author(s):
Spath, Pam

This paper offers a graphical exposition of the GTAP model of global trade. Particular emphasis is placed on the accounting, or equilibrium, relationships in the model. It begins with a treatment of the a one region version of GTAP, thereafter adding a rest of world region to highlight the treatment of trade flows in the model. The implementation of policy instruments in GTAP is also explored, using simple supply-demand graphics. The material provided in this paper was first developed as an introduction to GTAP for participants taking the annual short course.

Author(s):
BROCKMEIER,Martina

Biomass is a significant contributor to the US economy--agriculture, forest and paper products, food and related products account for 5% of our GDP. While the forest products industry self generates some of their energy, other sectors are importers. Bioenergy can contribute to economic development and to the environment. Examples of bioenergy routes suggest that atmospheric carbon can be cycled through biofuels in carefully designed systems for sustainability. Significant potential exists for these options.

Author(s):
Costello, Raymond

Abstract: To ensure effective biomass feedstock provision for large-scale ethanol production, a three-stage supply chain was proposed to include biomass supply sites, centralized storage and preprocessing (CSP) sites, and biorefi nery sites. A GIS-enabled biomass supply chain optimization model (BioScope) was developed to minimize annual biomass-ethanol production costs by selecting the optimal numbers, locations, and capacities of farms, CSPs, and biorefi neries as well as identifying the optimal biomass fl ow pattern from farms to biorefi neries.