Skip to main content

KDF Search Results

Displaying 1 - 20 of 49

Contact information about the submitter of this metadata record:
Author list: Maggie Davis, Matt Langholtz, Laurence Eaton, Chad Hellwinkel
Who should be contacted with questions relating to the data? (Principal investigator or primary developer of data product): Maggie Davis, davismr@ornl.gov

Organization:
DOE
Author(s):
Maggie Davis , Matt Langholtz , Laurence Eaton , Chad Hellwinkel
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Reducing dependence on fossil‐based energy has raised interest in biofuels as a potential energy source, but concerns have been raised about potential implications for water quality. These effects may vary regionally depending on the biomass feedstocks and changes in land management. Here, we focused on the Tennessee River Basin (TRB), USA.

Organization:
DOE
Author(s):
Wang, Gangsheng , Jager, Henriette
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Price Scenarios at $54 and $119 were simulated for Switchgrass, Miscanthus and Willow production from 2017 to 2040. These analyses were used in Woodbury, Peter B., et al. 2018. "Improving water quality in the Chesapeake Bay using payments for ecosystem services for perennial biomass for bioenergy and biofuel production." Biomass and Bioenergy 114:132-142. doi: https://doi.org/10.1016/j.biombioe.2017.01.024.

Organization:
USDA
Author(s):
Maggie R. Davis

This report provides a status of the markets and technology development involved in growing a domestic bioenergy economy. It compiles and integrates information to provide a snapshot of the current state and historical trends influencing the development of bioenergy markets. This information is intended for policy-makers as well as technology developers and investors tracking bioenergy developments. It also highlights some of the key energy and regulatory drivers of bioenergy markets. This report is supported by the U.S.

Author(s):
Ethan Warner , Kristi Moriarty , John Lewis , Anelia Milbrandt , Amy Schwab
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This paper analyzes the rural Chinese biomass supply system and models supply chain operations according to U.S. concepts of logistical unit operations: harvest and collection, storage, transportation, preprocessing, and handling and queuing. In this paper, we quantify the logistics cost of corn stover and sweet sorghum in China under different scenarios. We analyze three scenarios of corn stover logistics from northeast China and three scenarios of sweet sorghum stalks logistics from Inner Mongolia in China.

Author(s):
Lantian Ren, Kara Cafferty, Mohammad Ron, Jacob Jacobson, Guanghui Xie, Leslie Ovard, and Christopher Wright
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Harvesting of corn stover (plant residues) for cellulosic ethanol production must be balanced with the requirement for returning plant residues to agricultural fields to maintain soil structure, fertility, crop protection, and other ecosystem services. High rates of corn stover removal can be associated with decreased soil organic matter (SOM) quantity and quality and increased highly erodible soil aggregate fractions.

Author(s):
R. Michael Lehman , Thomas F. Ducey , Virginia L. Jin , Veronica Acosta-Martinez , Carla M. Ahlschwede , Elizabeth S. Jeske , Rhae A. Drijber , Keri B. Cantrell , James R. Frederick , Darci M. Fink , Shannon L. Osborne , Jeff M. Novak , Jane M. F. Johnson , Gary E. Varvel

In-field measurements of direct soil greenhouse gas (GHG) emissions provide critical data for quantifying the net energy efficiency and economic feasibility of crop residue-based bioenergy production systems. A major challenge to such assessments has been the paucity of field studies addressing the effects of crop residue removal and associated best practices for soil management (i.e., conservation tillage) on soil emissions of carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4).

Author(s):
Virginia L. Jin , John M. Baker , Jane M.-F. Johnson , Douglas L. Karlen , R. Michael Lehman , Shannon L. Osborne , Thomas J. Sauer , Diane E. Stott , Gary E. Varvel , Rodney T. Venterea , Marty R. Schmer , Brian J. Wienhold

Harvesting crop residue needs to be managed to protect agroecosystem health and productivity. DAYCENT, a process-based modeling tool, may be suited to accommodate region-specific factors and provide regional predictions for a broad array of agroecosystem impacts associated with corn stover harvest. Grain yield, soil C, and N2O emission data collected at Corn Stover Regional Partnership experimental sites were used to test DAYCENT performance modeling the impacts of corn stover removal.

Author(s):
Eleanor E. Campbell , Jane M. F. Johnson , Virginia L. Jin , R. Michael Lehman , Shannon L. Osborne , Gary E. Varvel , Keith Paustian

The Bioenergy Technologies Office hosted a workshop on Incorporating Bioenergy into Sustainable Landscape Designs on June 24-26 in partnership with Argonne and Oak Ridge National Laboratories. Landscape design offers a promising means for sustainably increasing bioenergy production while maintaining or enhancing other ecosystem services.

Author(s):
Bioenergy Technologies Office
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Bioenergy Technologies Office hosted two workshops on Incorporating Bioenergy into Sustainable Landscape Designs with Oak Ridge and Argonne National Laboratories. The first workshop focused on forestry landscapes and was held in New Bern, NC, from March 4-6, 2014. The second workshop focused on agricultural landscapes and was held in Argonne, IL, from June 24-26, 2014. Landscape design offers a promising means for sustainably increasing bioenergy production while maintaining or enhancing other ecosystem services.

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Bioenergy Technologies Office hosted a workshop on Incorporating Bioenergy into Sustainable Landscape Designs on March 4-6 in partnership with Oak Ridge and Argonne National Laboratories. Landscape design offers a promising means for sustainably increasing bioenergy production while maintaining or enhancing other ecosystem services.

Author(s):
Bioenergy Technologies Office
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Department of Energy (DOE) Bioenergy Technologies Office held a workshop on "Social Aspects of Bioenergy" on April 24, 2012, in Washington, D.C., and convened a webinar on this topic on May 8, 2012. The workshop addressed questions about how to measure and understand the social impacts of bioenergy production based on a set of social sustainability indicators for bioenergy that were developed by Oak Ridge National Laboratory.

Author(s):
Bioenergy Technologies Office
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Net benefits of bioenergy crops, including maize and perennial grasses such as switchgrass, are a function of several factors including the soil organic carbon (SOC) sequestered by these crops. Life cycle assessments (LCA) for bioenergy crops have been conducted using models in which SOC information is usually from the top 30 to 40 cm. Information on the effects of crop management practices on SOC has been limited so LCA models have largely not included any management practice effects.

Author(s):
Ronald F. Follett , Kenneth P. Vogel , Gary E. Varvel , Robert B. Mitchell , John Kimble

Abstract: Unfavorable weather can significantly impact the production and provision of agriculture-based biomass feedstocks such as Miscanthus and switchgrass. This work quantified the impact of regional weather on the feedstock production systems using the BioFeed modeling framework. Weather effects were incorporated in BioFeed by including the probability of working day (pwd) parameter in the model, which defined the fraction of days in a specific period such as two weeks that were suitable for field operations.

Author(s):
Shastri, Yogendra

Understanding the environmental effects of alternative fuel production is critical to characterizing the sustainability of energy resources to inform policy and regulatory decisions. The magnitudes of these environmental effects vary according to the intensity and scale of fuel production along each step of the supply chain. We compare the spatial extent and temporal duration of ethanol and gasoline production processes and environmental effects based on a literature review and then synthesize the scale differences on space-time diagrams.

Author(s):
Parish, Esther

Indicators of the environmental sustainability of biofuel production, distribution, and use should be selected, measured, and interpreted with respect to the context in which they are used. The context of a sustainability assessment includes the purpose, the particular biofuel production and distribution system, policy conditions, stakeholder values, location, temporal influences, spatial scale, baselines, and reference scenarios.

Author(s):
Efroymson, Rebecca

The increasing demand for bioenergy crops presents our society with the opportunity to design more sustainable landscapes. We have created a Biomass Location for Optimal Sustainability Model (BLOSM) to test the hypothesis that landscape design of cellulosic bioenergy crop plantings may simultaneously improve water quality (i.e. decrease concentrations of sediment, total phosphorus, and total nitrogen) and increase profits for farmer-producers while achieving a feedstock-production goal.

Author(s):
Parish, ES

Corn stover is targeted as a potential non-food bioenergy feedstock, especially in the Midwest United States.  Three parallel experiments on adjacent fields, one is managed without tillage since 1995, a second experiment is managed without tillage since 2005, and the third is managed with chisel plowing since 2005.  The residue removal treatments are the same in all experiments, with 0, 50%, 75% and 100% of the rows from plots in the corn phase of the rotation harvested. In 2008, the 75% stover removal was changed to cob removal.

Author(s):
Jane M. Johnson , Nancy Barbour

Indicators of the environmental sustainability of biofuel production, distribution, and use should be selected, measured, and interpreted with respect to the context in which they are used. The context of a sustainability assessment includes the purpose, the particular biofuel production and distribution system, policy conditions, stakeholder values, location, temporal influences, spatial scale, baselines, and reference scenarios.

Author(s):
R. A. Efroymson

Adding bioenergy to the U.S. energy portfolio requires long‐term profitability for bioenergy producers and
long‐term protection of affected ecosystems. In this study, we present steps along the path toward evaluating both sides of
the sustainability equation (production and environmental) for switchgrass (Panicum virgatum) using the Soil and Water
Assessment Tool (SWAT). We modeled production of switchgrass and river flow using SWAT for current landscapes at a