Skip to main content

KDF Search Results

Displaying 1 - 20 of 35

Contact information about the submitter of this metadata record:
Author list: Maggie Davis, Matt Langholtz, Laurence Eaton, Chad Hellwinkel
Who should be contacted with questions relating to the data? (Principal investigator or primary developer of data product): Maggie Davis, davismr@ornl.gov

Organization:
DOE
Author(s):
Maggie Davis , Matt Langholtz , Laurence Eaton , Chad Hellwinkel
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Social and economic indicators can be used to support design of sustainable energy systems. Indicators representing categories of social well-being, energy security, external trade, profitability, resource conservation, and social acceptability have not yet been measured in published sustainability assessments for commercial algal biofuel facilities.

Organization:
DOE
Author(s):
Rebecca A. Efroymson , Virginia H. Dale , Matthew H. Langholtz
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This paper analyzes the rural Chinese biomass supply system and models supply chain operations according to U.S. concepts of logistical unit operations: harvest and collection, storage, transportation, preprocessing, and handling and queuing. In this paper, we quantify the logistics cost of corn stover and sweet sorghum in China under different scenarios. We analyze three scenarios of corn stover logistics from northeast China and three scenarios of sweet sorghum stalks logistics from Inner Mongolia in China.

Author(s):
Lantian Ren, Kara Cafferty, Mohammad Ron, Jacob Jacobson, Guanghui Xie, Leslie Ovard, and Christopher Wright
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Harvesting of corn stover (plant residues) for cellulosic ethanol production must be balanced with the requirement for returning plant residues to agricultural fields to maintain soil structure, fertility, crop protection, and other ecosystem services. High rates of corn stover removal can be associated with decreased soil organic matter (SOM) quantity and quality and increased highly erodible soil aggregate fractions.

Author(s):
R. Michael Lehman , Thomas F. Ducey , Virginia L. Jin , Veronica Acosta-Martinez , Carla M. Ahlschwede , Elizabeth S. Jeske , Rhae A. Drijber , Keri B. Cantrell , James R. Frederick , Darci M. Fink , Shannon L. Osborne , Jeff M. Novak , Jane M. F. Johnson , Gary E. Varvel

In-field measurements of direct soil greenhouse gas (GHG) emissions provide critical data for quantifying the net energy efficiency and economic feasibility of crop residue-based bioenergy production systems. A major challenge to such assessments has been the paucity of field studies addressing the effects of crop residue removal and associated best practices for soil management (i.e., conservation tillage) on soil emissions of carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4).

Author(s):
Virginia L. Jin , John M. Baker , Jane M.-F. Johnson , Douglas L. Karlen , R. Michael Lehman , Shannon L. Osborne , Thomas J. Sauer , Diane E. Stott , Gary E. Varvel , Rodney T. Venterea , Marty R. Schmer , Brian J. Wienhold

Harvesting crop residue needs to be managed to protect agroecosystem health and productivity. DAYCENT, a process-based modeling tool, may be suited to accommodate region-specific factors and provide regional predictions for a broad array of agroecosystem impacts associated with corn stover harvest. Grain yield, soil C, and N2O emission data collected at Corn Stover Regional Partnership experimental sites were used to test DAYCENT performance modeling the impacts of corn stover removal.

Author(s):
Eleanor E. Campbell , Jane M. F. Johnson , Virginia L. Jin , R. Michael Lehman , Shannon L. Osborne , Gary E. Varvel , Keith Paustian

For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management.

Author(s):
R. A. Efroymson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Corn stover is targeted as a potential non-food bioenergy feedstock, especially in the Midwest United States.  Three parallel experiments on adjacent fields, one is managed without tillage since 1995, a second experiment is managed without tillage since 2005, and the third is managed with chisel plowing since 2005.  The residue removal treatments are the same in all experiments, with 0, 50%, 75% and 100% of the rows from plots in the corn phase of the rotation harvested. In 2008, the 75% stover removal was changed to cob removal.

Author(s):
Jane M. Johnson , Nancy Barbour

The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels.

Author(s):
Department of Energy

Meeting the Energy Independence and Security Act (EISA) renewable fuels goals requires development
of a large sustainable domestic supply of diverse biomass feedstocks. Macroalgae, also known as
seaweed, could be a potential contributor toward this goal. This resource would be grown in marine
waters under U.S. jurisdiction and would not compete with existing land-based energy crops.
Very little analysis has been done on this resource to date. This report provides information needed for an

Organization:
DOE
Author(s):
Roesijadi, G

Agricultural activities have dramatically altered our planet?s land surface. To understand the extent and spatial distribution of these changes, we have developed a new global data set of croplands and pastures circa 2000 by combining agricultural inventory data and satellite-derived land cover data. The agricultural inventory data, with much greater spatial detail than previously available, is used to train a land cover classification data set obtained by merging two different satellite-derived products (Boston University?s MODIS-derived land cover product and the GLC2000 data set).

Author(s):
Ramankutty, Navin

The harvest of corn stover or herbaceous crops as feedstocks for bioenergy purposes has been shown to have significant benefits from energy and climate change perspectives. There is a potential, however, to adversely impact water and soil quality, especially in Midwestern states where the biomass feedstock production would predominantly occur.

Author(s):
Nelson, Richard

National interests in greater energy independence, concurrent with favorable market forces, have driven increased production of corn-based ethanol in the United States and research into the next generation of biofuels. The trend is changing the national agricultural landscape and has raised concerns about potential impacts on the nation?s water resources. This report examines some of the key issues and identifies opportunities for shaping policies that help to protect water resources.

Author(s):
Schnoor, Jerald

Growing concern about climate change and energy security has led to increasing interest in developing renewable, domestic energy sources for meeting electricity, heating and fuel needs in the United States. Illinois has significant potential to produce bioenergy crops, including corn, soybeans, miscanthus (Miscanthus giganteus), and switchgrass (Panicum virgatum). However, land requirements for bioenergy crops place them in competition with more traditional agricultural uses, in particular food production.

Author(s):
Scheffran, Jurgen

Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution.

Author(s):
Verburg,P.H.

Power generation emits significant amounts of greenhouse gases (GHGs), mainly carbon dioxide (CO2). Sequestering CO2 from the power plant flue gas can significantly reduce the GHGs from the power plant itself, but this is not the total picture. CO2 capture and sequestration consumes additional energy, thus lowering the plant's fuel-to-electricity efficiency. To compensate for this, more fossil fuel must be procured and consumed to make up for lost capacity.

Author(s):
Spath, Pam

This model was developed at Idaho National Laboratory and focuses on crop production. This model is an agricultural cultivation and production model, but can be used to estimate biomass crop yields.

Author(s):
Hoskinson, R.L.

Biomass is a significant contributor to the US economy--agriculture, forest and paper products, food and related products account for 5% of our GDP. While the forest products industry self generates some of their energy, other sectors are importers. Bioenergy can contribute to economic development and to the environment. Examples of bioenergy routes suggest that atmospheric carbon can be cycled through biofuels in carefully designed systems for sustainability. Significant potential exists for these options.

Author(s):
Costello, Raymond

NOAA's National Centers for Coastal Ocean Science's (NCCOS's) PCMHAB program funds research to move promising technologies for preventing, controlling, or mitigating HABs and their impacts through development, to demonstration, and, finally application, culminating in wide spread use in the field by end-users. A more detailed description of the program and its projects are available at the link below.

National biomass feedstock assessments (Perlack et al., 2005; DOE, 2011) have focused on cellulosic biomass resources, and have not included potential algal feedstocks. Recent research (Wigmosta et al., 2011) provides spatially-­‐explicit information on potential algal biomass and oil yields, water use, and facility locations. Oak Ridge National Laboratory and Pacific Northwest National Lab are collaborating to integrate terrestrial and algal feedstock resource assessments. This poster describes preliminary results of this research.

Author(s):
Matthew Langholtz
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.