Skip to main content

KDF Search Results

Displaying 1 - 20 of 33

Logging and mill residues are currently the largest sources of woody biomass for bioenergy in the US, but short-rotation woody crops (SRWCs) are expected to become a larger contributor to biomass production, primarily on lands marginal for food production. However, there are very few studies on the environmental effects of SRWCs, and most have been conducted at stand rather than at watershed scales.

Organization:
DOE
Author(s):
Natalie A. Griffiths , Benjamin M. Rau , Kellie B. Vache , Gregory Starr , Menberu M. Bitew , Doug P. Aubrey , James A. Martin , Elizabeth Benton , C. Rhett Jackson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Advanced biomass feedstocks tend to provide more non-fuel ecosystem goods and services (ES) than 1st-generation alternatives. We explore the idea that payment for non-fuel ES could facilitate market penetration of advanced biofuels by closing the profitability gap. As a specific example, we discuss the Mississippi-Atchafalaya River Basin (MARB), where 1st-generation bioenergy feedstocks (e.g., corn-grain) have been integrated into the agricultural landscape.

Organization:
DOE
Author(s):
Jager, Henriette I , Efroymson, Rebecca A.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Join the U.S. Department of Energy’s Bioenergy Technologies Office on Dec. 6, 2018, at 1 p.m. CST for a webinar on “Biomass Production and Water Quality in the Mississippi River Basin.” In this webinar, Argonne National Laboratory and Oak Ridge National Laboratory will jointly present modeling and analyses of potential implications of biomass production on nutrients and sediments in each of the six tributaries of the Mississippi River Basin.

Organization:
DOE
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Model-data comparisons are always challenging, especially when working at a large spatial scale and evaluating multiple response variables. We implemented the Soil and Water Assessment Tool (SWAT) to simulate water quantity and quality for the Tennessee River Basin.

Author(s):
Gangsheng Wang
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Several EU countries import wood pellets from the south-eastern United States. The imported wood pellets are (co-)fired in power plants with the aim of reducing overall greenhouse gas (GHG) emissions from electricity and meeting EU renewable energy targets. To assess whether GHG emissions are reduced and on what timescale, we construct the GHG balance of wood-pellet electricity. This GHG balance consists of supply chain and combustion GHG emissions, carbon sequestration during biomass growth and avoided GHG emissions through replacing fossil electricity.

Author(s):
Hanssen SV , Duden AS , Junginger HM , Dale VH , van der Hilst F

This dataset reports the pre-treatment hydrology and pre- and post-treatment water quality data from a watershed-scale experiment that is evaluating the effects of growing short-rotation loblolly pine for bioenergy on water quality and quantity in the southeastern U.S. The experiment is taking place on the Savannah River Site, near New Ellenton, South Carolina, USA.  Beginning in 2010, water quality and hydrology were measured for two years in 3 watersheds (R, B, C).

Author(s):
Natalie A. Griffiths , C. Rhett Jackson , Jeffrey J. McDonnell , Julian Klaus , Enhao Du , Menberu M. Bitew , Allison M. Fortner , Kevin L. Fouts , Kitty McCracken , Jana R. Phillips
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This report provides a status of the markets and technology development involved in growing a domestic bioenergy economy as it existed at the end of calendar year 2013. It compiles and integrates information to provide a snapshot of the current state and historical trends influencing the development of bioenergy markets. This information is intended for policy-makers as well as technology developers and investors tracking bioenergy developments. It also highlights some of the key energy and regulatory drivers of bioenergy markets.

Author(s):
U.S. Department of Energy
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Global development of the biofuel sector is proceeding rapidly. Biofuel feedstock continues to be produced from a variety of agricultural and forestry resources. Large-scale feedstock production for biofuels could change the landscape structure and affect water quantity, water quality, and ecosystem services in positive or negative ways. With rapid advancements in computation technologies and science, field- and watershed-scale models have become a vital tool for quantifying water quality and ecosystem responses to bioenergy landscape and management practices.

Author(s):
Zhonglong Zhang , May Wu
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Using the Soil and Water Assessment Tool (SWAT) for large-scale watershed modeling could be useful for evaluating the quality of the water in regions that are dominated by nonpoint sources in order to identify potential “hot spots” for which mitigating strategies could be further developed. An analysis of water quality under future scenarios in which changes in land use would be made to accommodate increased biofuel production was developed for the Missouri River Basin (MoRB) based on a SWAT model application.

Water consumption and water quality continue to be key factors affecting environmental sustainability in biofuel production. This review covers the findings from biofuel water analyses published over the past 2 years to underscore the progress made, and to highlight advancements in understanding the interactions among increased production and water demand, water resource availability, and potential changes in water quality. We focus on two key areas: water footprint assessment and watershed modeling.

Organization:
DOE
Author(s):
May Wu , Zhonglong Zhang , Yiwen Chiu
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The increasing demand for bioenergy crops presents our society with the opportunity to design more sustainable landscapes. We have created a Biomass Location for Optimal Sustainability Model (BLOSM) to test the hypothesis that landscape design of cellulosic bioenergy crop plantings may simultaneously improve water quality (i.e. decrease concentrations of sediment, total phosphorus, and total nitrogen) and increase profits for farmer-producers while achieving a feedstock-production goal.

Author(s):
Parish, ES

The harvest of corn stover or herbaceous crops as feedstocks for bioenergy purposes has been shown to have significant benefits from energy and climate change perspectives. There is a potential, however, to adversely impact water and soil quality, especially in Midwestern states where the biomass feedstock production would predominantly occur.

Author(s):
Nelson, Richard

National interests in greater energy independence, concurrent with favorable market forces, have driven increased production of corn-based ethanol in the United States and research into the next generation of biofuels. The trend is changing the national agricultural landscape and has raised concerns about potential impacts on the nation?s water resources. This report examines some of the key issues and identifies opportunities for shaping policies that help to protect water resources.

Author(s):
Schnoor, Jerald

Power generation emits significant amounts of greenhouse gases (GHGs), mainly carbon dioxide (CO2). Sequestering CO2 from the power plant flue gas can significantly reduce the GHGs from the power plant itself, but this is not the total picture. CO2 capture and sequestration consumes additional energy, thus lowering the plant's fuel-to-electricity efficiency. To compensate for this, more fossil fuel must be procured and consumed to make up for lost capacity.

Author(s):
Spath, Pam

Biomass is a significant contributor to the US economy--agriculture, forest and paper products, food and related products account for 5% of our GDP. While the forest products industry self generates some of their energy, other sectors are importers. Bioenergy can contribute to economic development and to the environment. Examples of bioenergy routes suggest that atmospheric carbon can be cycled through biofuels in carefully designed systems for sustainability. Significant potential exists for these options.

Author(s):
Costello, Raymond

The estimation of greenhouse gas (GHG) emissions from a change in land-use and management resulting from growing biofuel feedstocks has undergone extensive – and often contentious – scientific and policy debate. Emergent renewable fuel policies require life cycle GHG emission accounting that includes biofuel-induced global land-use change (LUC) GHG emissions. However, the science of LUC generally, and biofuels-induced LUC specifically, is nascent and underpinned with great uncertainty.

The U.S. biomass resource can be used several ways that provide domestic, renewable energy to users. Understanding the capacity of the biomass resource, its potential in energy markets, and the most economic utilization of biomass is important in policy development and project selection. This study analyzed the potential for biomass within markets and the competition between them.

Organization:
DOE

The petroleum-based transportation fuel system is complex and highly developed, in contrast to the nascent low-petroleum, low-carbon alternative fuel system. This report examines how expansion of the low-carbon transportation fuel infrastructure could contribute to deep reductions in petroleum use and greenhouse gas (GHG) emissions across the U.S. transportation sector.

Land-use change (LUC) is a contentious policy issue because of its uncertain, yet potentially substantial, impact on bioenergy climate change benefits. Currently, the share of global GHG emissions from biofuels-induced LUC is small compared to that from LUC associated with food and feed production and other human-induced causes. However, increasing demand for biofuels derived from feedstocks grown on agricultural land could increase this contribution. No consensus has emerged on how to appropriately isolate and quantify LUC impacts of bioenergy from those of other LUC drivers.

This paper examines the possibilities of breaking into the cellulosic ethanol market in south Louisiana via strategic feedstock choices and the leveraging of the area’s competitive advantages. A small plant strategy is devised whereby the first-mover problem might be solved, and several scenarios are tested using Net Present Value analysis.

Author(s):
Darby, Paul