Skip to main content

KDF Search Results

Displaying 1 - 20 of 20

The Bioenergy Technologies Office hosted a workshop on Incorporating Bioenergy into Sustainable Landscape Designs on June 24-26 in partnership with Argonne and Oak Ridge National Laboratories. Landscape design offers a promising means for sustainably increasing bioenergy production while maintaining or enhancing other ecosystem services.

Author(s):
Bioenergy Technologies Office
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Bioenergy Technologies Office hosted two workshops on Incorporating Bioenergy into Sustainable Landscape Designs with Oak Ridge and Argonne National Laboratories. The first workshop focused on forestry landscapes and was held in New Bern, NC, from March 4-6, 2014. The second workshop focused on agricultural landscapes and was held in Argonne, IL, from June 24-26, 2014. Landscape design offers a promising means for sustainably increasing bioenergy production while maintaining or enhancing other ecosystem services.

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Bioenergy Technologies Office hosted a workshop on Incorporating Bioenergy into Sustainable Landscape Designs on March 4-6 in partnership with Oak Ridge and Argonne National Laboratories. Landscape design offers a promising means for sustainably increasing bioenergy production while maintaining or enhancing other ecosystem services.

Author(s):
Bioenergy Technologies Office
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Department of Energy (DOE) Bioenergy Technologies Office held a workshop on "Social Aspects of Bioenergy" on April 24, 2012, in Washington, D.C., and convened a webinar on this topic on May 8, 2012. The workshop addressed questions about how to measure and understand the social impacts of bioenergy production based on a set of social sustainability indicators for bioenergy that were developed by Oak Ridge National Laboratory.

Author(s):
Bioenergy Technologies Office
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The U.S. Department of Energy Biomass Program sponsored the Land-Use Change and Bioenergy workshop in Vonore, Tennessee, from May 11 to May 14, 2009. More than 50 experts from around the world gathered to review the state of the science, identify opportunities for collaboration, and prioritize next steps for the research and data needed to address key issues regarding the land-use effects of bioenergy policies. A key outcome of the workshop was the
identification of research areas that may improve our understanding of land-use change in a bioenergy context.

Author(s):
ORNL

The harvest of corn stover or herbaceous crops as feedstocks for bioenergy purposes has been shown to have significant benefits from energy and climate change perspectives. There is a potential, however, to adversely impact water and soil quality, especially in Midwestern states where the biomass feedstock production would predominantly occur.

Author(s):
Nelson, Richard

National interests in greater energy independence, concurrent with favorable market forces, have driven increased production of corn-based ethanol in the United States and research into the next generation of biofuels. The trend is changing the national agricultural landscape and has raised concerns about potential impacts on the nation?s water resources. This report examines some of the key issues and identifies opportunities for shaping policies that help to protect water resources.

Author(s):
Schnoor, Jerald

Power generation emits significant amounts of greenhouse gases (GHGs), mainly carbon dioxide (CO2). Sequestering CO2 from the power plant flue gas can significantly reduce the GHGs from the power plant itself, but this is not the total picture. CO2 capture and sequestration consumes additional energy, thus lowering the plant's fuel-to-electricity efficiency. To compensate for this, more fossil fuel must be procured and consumed to make up for lost capacity.

Author(s):
Spath, Pam

Biomass is a significant contributor to the US economy--agriculture, forest and paper products, food and related products account for 5% of our GDP. While the forest products industry self generates some of their energy, other sectors are importers. Bioenergy can contribute to economic development and to the environment. Examples of bioenergy routes suggest that atmospheric carbon can be cycled through biofuels in carefully designed systems for sustainability. Significant potential exists for these options.

Author(s):
Costello, Raymond

The Energy Independence and Security Act (EISA) of 2007 established specific targets for the production of biofuel in the United States. Until advanced technologies become commercially viable, meeting these targets will increase demand for traditional agricultural commodities used to produce ethanol, resulting in land-use, production, and price changes throughout the farm sector. This report summarizes the estimated effects of meeting the EISA targets for 2015 on regional agricultural production and the environment. Meeting EISA targets for ethanol production is estimated to expand U.S.

Author(s):
Malcolm, Scott A.

This paper examines the impact of biofuel expansion on grain utilization and distribution at the state and cropping district level as most of grain producers and handlers are directly influenced by the local changes. We conducted a survey to understand the utilization and flows of corn, ethanol and its co-products, such as dried distillers grains (DDG) in Iowa. Results suggest that the rapidly expanding ethanol industry has a significant impact on corn utilization in Iowa.

Author(s):
Yu, Tun-Hsiang (Edward)

This paper introduces a spatial bioeconomic model for study of potential cellulosic biomass supply at regional scale. By modeling the profitability of alternative crop production practices, it captures the opportunity cost of replacing current crops by cellulosic biomass crops. The model draws upon biophysical crop input-output coefficients, price and cost data, and spatial transportation costs in the context of profit maximization theory. Yields are simulated using temperature, precipitation and soil quality data with various commercial crops and potential new cellulosic biomass crops.

Author(s):
Egbendewe-Mondzozo, Aklesso

Transgenic modification of plants is a key enabling technology for developing sustainable biofeedstocks for biofuels production. Regulatory decisions and the wider acceptance and development of transgenic biofeedstock crops are considered from the context of science-based risk assessment. The risk assessment paradigm for transgenic biofeedstock crops is fundamentally no different from that of current generation transgenic crops, except that the focus of the assessment must consider the unique attributes of a given biofeedstock crop and its environmental release.

Author(s):
Wolt, Jeffrey D.

Soaring global food prices are threatening to push more poor people back below the poverty line; this will probably become aggravated by the serious challenge that increasing population and climate changes are posing for food security. There is growing evidence that human activities involving fossil fuel consumption and land use are contributing to greenhouse gas emissions and consequently changing the climate worldwide. The finite nature of fossil fuel reserves is causing concern about energy security and there is a growing interest in the use of renewable energy sources such as biofuels.

Author(s):
Acosta, O.

The rapidly expanding biofuel industry has changed the fundamentals of U.S. agricultural commodity markets. Increasing ethanol and biodiesel production has generated a fast-growing demand for corn and soybean products, which competes with the well-established domestic livestock industry and foreign buyers. Meanwhile, the co-products of biofuel production are replacing or displacing coarse grains and oilseed meal in feed rations for livestock.

Author(s):
Tun-Hsiang (Edward) Yu

Prior studies have estimated that a liter of bioethanol requires 263−784 L of water from corn farm to fuel pump, but these estimates have failed to account for the widely varied regional irrigation practices. By using regional time-series agricultural and ethanol production data in the U.S., this paper estimates the state-level field-to-pump water requirement of bioethanol across the nation. The results indicate that bioethanol’s water requirements can range from 5 to 2138 L per liter of ethanol depending on regional irrigation practices.

Author(s):
Yi-Wen Chiu

There is a strong societal need to evaluate and understand the sustainability of biofuels, especially because of the significant increases in production mandated by many countries, including the United States. Sustainability will be a strong factor in the regulatory environment and investments in biofuels. Biomass feedstock production is an important contributor to environmental, social, and economic impacts from biofuels.

Author(s):
Gayathri Gopalakrishnan

In this paper, we assess what is known or anticipated about environmental and sustainability factors associated with next-generation biofuels relative to the primary conventional biofuels (i.e., corn grain-based ethanol and soybean-based diesel) in the United States during feedstock production and conversion processes. Factors considered include greenhouse (GHG) emissions, air pollutant emissions, soil health and quality, water use and water quality, wastewater and solid waste streams, and biodiversity and land-use changes.

Author(s):
Pamela R. D. Williams

Greenhouse gas release from land use change (the socalled ?carbon debt?) has been identified as a potentially significant contributor to the environmental profile of biofuels. The time required for biofuels to overcome this carbon debt duetolandusechangeandbeginprovidingcumulativegreenhouse gas benefits is referred to as the ?payback period? and has been estimated to be 100-1000 years depending on the specific ecosystem involved in the land use change event. Two mechanisms for land use change exist: ?direct?

Author(s):
Kim,Hyungtae