Skip to main content

KDF Search Results

Displaying 1 - 20 of 30

Link to the website with documentation and download instructions for the PNNL Global Change Assessment Model (GCAM), a community model or long-term, global energy, agriculture, land use, and emissions. BioEnergy production, transformation, and use is an integral part of GCAM modeling and scenarios.

http://jgcri.github.io/gcam-doc/

Author(s):
Marshall Wise
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Adding bioenergy to the U.S. energy portfolio requires long‐term profitability for bioenergy producers and
long‐term protection of affected ecosystems. In this study, we present steps along the path toward evaluating both sides of
the sustainability equation (production and environmental) for switchgrass (Panicum virgatum) using the Soil and Water
Assessment Tool (SWAT). We modeled production of switchgrass and river flow using SWAT for current landscapes at a

Relationships between people and their environment are largely defined by land use. Space and soil are needed for native plants and wildlife, as well as for crops used for food, feed, fiber, wood products and biofuel (liquid fuel derived from plant material). People also use land for homes, schools, jobs, transportation, mining and recreation. Social and economic forces influence the allocation of land to various uses.

Author(s):
Virginia Dale

A broad-scale perspective on the nexus between climate change, land use, and energy requires consideration of interactions that were often omitted from climate change studies. While prior analyses have considered how climate change affects land use and vice versa (Dale 1997), there is growing awareness of the need to include energy within the analytical framework. A broad-scale perspective entails examining patterns and process at divers spatial and temporal resolutions.

Author(s):
Virginia H. Dale

The establishment of bioenergy crops will affect ecological processes and their interactions and thus has an influence on ecosystem services provided by the lands on which these crops are grown. The regional-scale effects of bioenergy choices on ecosystem services need special attention because they often have been neglected yet can affect the ecological, social, and economic aspects of sustainability.

Author(s):
Virginia Dale , Richard Lowrance , Patrick Mulholland , G Phillip Robertson

The U.S. Department of Energy Biomass Program sponsored the Land-Use Change and Bioenergy workshop in Vonore, Tennessee, from May 11 to May 14, 2009. More than 50 experts from around the world gathered to review the state of the science, identify opportunities for collaboration, and prioritize next steps for the research and data needed to address key issues regarding the land-use effects of bioenergy policies. A key outcome of the workshop was the
identification of research areas that may improve our understanding of land-use change in a bioenergy context.

Author(s):
ORNL

Despite recent claims to the contrary, plant-based fuels developed in economically and environmentally sensible ways can contribute significantly to the nation’s— indeed, the world’s—energy security while providing a host of benefits for many people worldwide.

Author(s):
Keith L. Kline , Virginia H. Dale , Russell Lee , Paul Leiby

As the US begins to integrate biomass crops and residues into its mix of energy feedstocks, tools are needed to measure the long-term sustainability of these feedstocks. Two aspects of sustainability are long-term potential for profitably producing energy and protection of ecosystems influenced by energy-related activities. The Soil and Water Assessment Tool (SWAT) is an important model used in our efforts to quantify both aspects. To quantify potential feedstock production, we used SWAT to estimate switchgrass yields at a national scale.

Author(s):
Baskaran, Latha

In response to concerns about oil dependency and the contributions of fossil fuel use to climatic change, the U.S. Department of Energy has begun a research initiative to make 20% of motor fuels biofuel based in 10 years, and make 30% of fuels bio-based by 2030. Fundamental to this objective is developing an understanding of feedstock dynamics of crops suitable for cellulosic ethanol production. This report focuses on switchgrass, reviewing the existing literature from field trials across the United States, and compiling it for the first time into a single database.

Author(s):
Gunderson, Carla A.

The harvest of corn stover or herbaceous crops as feedstocks for bioenergy purposes has been shown to have significant benefits from energy and climate change perspectives. There is a potential, however, to adversely impact water and soil quality, especially in Midwestern states where the biomass feedstock production would predominantly occur.

Author(s):
Nelson, Richard

IN THEIR REPORTS IN THE 29 FEBRUARY ISSUE (“LAND CLEARING AND THE BIOFUEL CARBON debt,” J. Fargione et al., p. 1235, and “Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change,” T. Searchinger et al., p. 1238), the authors do not provide adequate support for their claim that biofuels cause high emissions due to land-use change. The conclusions of both papers depend on the misleading premise that biofuel production causes forests and grasslands to be converted to agriculture.

Author(s):
Keith L. Kline , Virginia H. Dale

The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries — biorefineries — making a variety of fuels, chemicals, and other products.

Author(s):
Perlack, R.D.

This paper offers a graphical exposition of the GTAP model of global trade. Particular emphasis is placed on the accounting, or equilibrium, relationships in the model. It begins with a treatment of the a one region version of GTAP, thereafter adding a rest of world region to highlight the treatment of trade flows in the model. The implementation of policy instruments in GTAP is also explored, using simple supply-demand graphics. The material provided in this paper was first developed as an introduction to GTAP for participants taking the annual short course.

Author(s):
BROCKMEIER,Martina

Biomass is a significant contributor to the US economy--agriculture, forest and paper products, food and related products account for 5% of our GDP. While the forest products industry self generates some of their energy, other sectors are importers. Bioenergy can contribute to economic development and to the environment. Examples of bioenergy routes suggest that atmospheric carbon can be cycled through biofuels in carefully designed systems for sustainability. Significant potential exists for these options.

Author(s):
Costello, Raymond

We present a system dynamics global LUC model intended to examine LUC attributed to biofuel production. The model has major global land system stocks and flows and can be exercised under different food and biofuel demand assumptions. This model provides insights into the drivers and dynamic interactions of LUC, population, dietary choices, and biofuel policy rather than a precise number generator.

The estimation of greenhouse gas (GHG) emissions from a change in land-use and management resulting from growing biofuel feedstocks has undergone extensive – and often contentious – scientific and policy debate. Emergent renewable fuel policies require life cycle GHG emission accounting that includes biofuel-induced global land-use change (LUC) GHG emissions. However, the science of LUC generally, and biofuels-induced LUC specifically, is nascent and underpinned with great uncertainty.

The IPCC SRREN report addresses information needs of policymakers, the private sector and civil society on the potential of renewable energy sources for the mitigation of climate change, providing a comprehensive assessment of renewable energy technologies and related policy and financial instruments. The IPCC report was a multinational collaboration and synthesis of peer reviewed information: Reviewed, analyzed, coordinated, and integrated current high quality information.