Skip to main content

KDF Search Results

Displaying 1 - 20 of 21

Conventional feedstock supply systems exist and have been developed for traditional agriculture and forestry systems. These conventional feedstock supply systems can be effective in high biomass-yielding areas (such as for corn stover in Iowa and plantation-grown pine trees in the southern United States), but they have their limits, particularly with respect to addressing feedstock quality and reducing feedstock supply risk to biorefineries. They also are limited in their ability to efficiently deliver energy crops.

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability.

Author(s):
Robert Boundy , Susan W. Diegel , Lynn Wright , Stacy C. Davis
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The global indirect land use change (ILUC) implications of biofuel use in the United States of America (USA) from 2001 to 2010 are evaluated with a dynamic general equilibrium model.  The effects of biofuels production on agricultural land area vary by year; from a net expansion of 0.17ha per 1000 gallons produced (2002) to a net contraction of 0.13ha per 1000 gallons (2018) in Case 1 of our simulation.  In accordance with the general narrative about the implications of biofuel policy, agricultural land area increased in many regions of the world.  However, oil-export dependent economies e

Author(s):
Gbadebo Oladosu

Despite recent claims to the contrary, plant-based fuels developed in economically and environmentally sensible ways can contribute significantly to the nation’s— indeed, the world’s—energy security while providing a host of benefits for many people worldwide.

Author(s):
Keith L. Kline , Virginia H. Dale , Russell Lee , Paul Leiby

Electric power production from biomass has the potential to make significant contributions to the power mix in the U.S., and to do so with substantially fewer environmental impacts than current technologies. Using dedicated energy crops for power production will significantly close the carbon cycle, reduce and stabilize feedstock costs, increase the feasible size of biomass power plants, and provide economic benefits to agricultural communities.

Author(s):
Mann, Maggie

Abstract: To ensure effective biomass feedstock provision for large-scale ethanol production, a three-stage supply chain was proposed to include biomass supply sites, centralized storage and preprocessing (CSP) sites, and biorefi nery sites. A GIS-enabled biomass supply chain optimization model (BioScope) was developed to minimize annual biomass-ethanol production costs by selecting the optimal numbers, locations, and capacities of farms, CSPs, and biorefi neries as well as identifying the optimal biomass fl ow pattern from farms to biorefi neries.

Bioenergy has been recognized as an important source of energy that will reduce nation’s dependency on petroleum, and have a positive impact on the economy, environment, and society. Production of bioenergy is expected to increase. As a result, we foresee an increase in the number of biorefineries in the near future. This paper analyzes logistical challenges with supplying biomass to a biorefinery.

This paper examines the possibilities of breaking into the cellulosic ethanol market in south Louisiana via strategic feedstock choices and the leveraging of the area’s competitive advantages. A small plant strategy is devised whereby the first-mover problem might be solved, and several scenarios are tested using Net Present Value analysis.

Author(s):
Darby, Paul

This paper examines the impact of declining energy prices on biofuels production and use and its implications to agricultural commodity markets. It uses PEATSim, a dynamic partial equilibrium, multi-commodity, multi-country global trade model of the agriculture sector to analyze the interaction between biofuel, crop and livestock sectors. The ability of countries to achieve their energy goals will be affected by future direction of petroleum prices.

Author(s):
Peters, May

PEATSim (Partial Equilibrium Agricultural Trade Simulation) is a dynamic, partial equilibrium, mathematical-based model that enables users to reach analytical solutions to problems, given a set of parameters, data, and initial
conditions. This theoretical tool developed by ERS incorporates a wide range of domestic and border policies that enables it to estimate the market and trade effects of policy changes on agricultural markets. PEATSim captures

Author(s):
USDA Economic Research Service

Agricultural markets often feature significant transport costs and spatially distributed production and processing which causes spatial imperfect competition. Spatial economics considers the firms’ decisions regarding location and spatial price strategy separately, usually on the demand side, and under restrictive assumptions. Therefore, alternative approaches are needed to explain, e.g., the location of new ethanol plants in the U.S. at peripheral as well as at central locations and the observation of different spatial price strategies in the market.

Author(s):
Graubner, Marten

This paper introduces a spatial bioeconomic model for study of potential cellulosic biomass supply at regional scale. By modeling the profitability of alternative crop production practices, it captures the opportunity cost of replacing current crops by cellulosic biomass crops. The model draws upon biophysical crop input-output coefficients, price and cost data, and spatial transportation costs in the context of profit maximization theory. Yields are simulated using temperature, precipitation and soil quality data with various commercial crops and potential new cellulosic biomass crops.

Author(s):
Egbendewe-Mondzozo, Aklesso

When the lignocellulosic biofuels industry reaches maturity and many types of biomass sources become economically viable, management of multiple feedstock supplies – that vary in their yields, density (tons per unit area), harvest window, storage and seasonal costs, storage losses, transport distance to the production plant – will become increasingly important for the success of individual enterprises. The manager’s feedstock procurement problem is modeled as a multi-period sequence problem to account for dynamic management over time.

Author(s):
Kumarappan, Subbu

Energy security and environmental concerns about global climate change have lead to recent growth in the use of bio-fuels in the U.S. Brazil currently exports a substantial share of its sugarcane based ethanol to the U.S. to support the growing demand for bio-fuels. However, U.S. policies that exogenously affect the bio-fuel sector confound the understanding of the multi-market impacts of a growing bio-fuel demand. Moreover, the various forms of government intervention in the bio-fuel economy leave researchers with unclear conclusions about the prospects for bio-fuels.

Author(s):
Bowser, William

The National Renewable Energy Laboratory (NREL) originally developed this application for biopower with funding from the Environmental Protection Agency's Blue Skyways Collaborative. The Department of Energy's Office of Biomass Program provided funding for biofuels functionality. More information on funding agencies is available: http://www.blueskyways.org and http://www.eere.energy.gov/biomass/.

The purpose of this study is to analyse the economical and environmental performance of switchgrass and miscanthus production and supply chains in the European Union (EU25), for the years 2004 and 2030. The environmental performance refers to the greenhouse gas (GHG) emissions, the primary fossil energy use and to the impact on fresh water reserves, soil erosion and biodiversity. Analyses are carried out for regions in five countries.

Author(s):
Edward M.W. Smeets

Transgenic modification of plants is a key enabling technology for developing sustainable biofeedstocks for biofuels production. Regulatory decisions and the wider acceptance and development of transgenic biofeedstock crops are considered from the context of science-based risk assessment. The risk assessment paradigm for transgenic biofeedstock crops is fundamentally no different from that of current generation transgenic crops, except that the focus of the assessment must consider the unique attributes of a given biofeedstock crop and its environmental release.

Author(s):
Wolt, Jeffrey D.