Skip to main content

KDF Search Results

Displaying 1 - 8 of 8

This 2016 Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office (BETO). It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is intended for use as an operational guide to help the Office manage and coordinate its activities, as well as a resource to help communicate its mission and goals to stakeholders and the public.

Author(s):
Bioenergy Technologies Office (BETO)
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Despite recent claims to the contrary, plant-based fuels developed in economically and environmentally sensible ways can contribute significantly to the nation’s— indeed, the world’s—energy security while providing a host of benefits for many people worldwide.

Author(s):
Keith L. Kline , Virginia H. Dale , Russell Lee , Paul Leiby

The Biomass Program is one of the nine technology development programs within the Office of Energy Efficiency and Renewable Energy (EERE) at the U.S. Department of Energy (DOE). This 2011 Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Biomass Program. It identifies the research, development, demonstration, and deployment (RDD&D) activities the Program will focus on over the next five years, and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation.

Author(s):
Office of the Biomass Program
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Agricultural markets often feature significant transport costs and spatially distributed production and processing which causes spatial imperfect competition. Spatial economics considers the firms’ decisions regarding location and spatial price strategy separately, usually on the demand side, and under restrictive assumptions. Therefore, alternative approaches are needed to explain, e.g., the location of new ethanol plants in the U.S. at peripheral as well as at central locations and the observation of different spatial price strategies in the market.

Author(s):
Graubner, Marten

When the lignocellulosic biofuels industry reaches maturity and many types of biomass sources become economically viable, management of multiple feedstock supplies – that vary in their yields, density (tons per unit area), harvest window, storage and seasonal costs, storage losses, transport distance to the production plant – will become increasingly important for the success of individual enterprises. The manager’s feedstock procurement problem is modeled as a multi-period sequence problem to account for dynamic management over time.

Author(s):
Kumarappan, Subbu

Supply chain management involves all of the activities in industrial organizations from raw material procurement to final product delivery to customers. The main aim in supply chain management is to satisfy production requirements, while optimizing the economic objectives. In traditional fossil fuel supply chains, huge amounts of fossil fuels are transported via pipelines or tankers with very small costs. These fuels can be transformed into other sources of energy or transportation fuels at their destination points.

Author(s):
Ahu Soylu

The use of Geographic Information Systems (GIS) for understanding the geographic context of bioenergy supplies is discussed and a regional-scale, GIS-based modeling system for estimating potential biomass supplies from energy crops is described. While GIS models can capture geographic variation that may in?uence biomass costs and supplies, GIS models are not likely to handle uncertainty well and are often limited by the lack of spatially explicit data.

Author(s):
Graham Robin L.