Skip to main content

KDF Search Results

Displaying 1 - 11 of 11

The goal of this repository is to promote transparency and ease-of-access to the U.S. Department of Energy Bioenergy Technologies Office (BETO) supported public studies involving techno-economic analysis (TEA). As such, this database summarizes the economic and technical parameters associated with the modeled biorefinery processes for the production of biofuels and bioproducts, as presented in a range of published reports and papers.

Organization:
DOE
Author(s):
Christopher Kinchin
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The preceding two chapters of this volume have discussed physical and economic data bases for global agriculture and forestry, respectively. These form the foundation for the integrated, global land use data base discussed in this chapter. However, in order to utilize these data for global CGE analysis, it is first necessary to integrate them into a global, general equilibrium data base. This integration is the subject of the present chapter

Author(s):
Huey-Lin Lee

This paper describes the GTAP land use data base designed to support integrated assessments of the potential for greenhouse gas mitigation. It disaggregates land use by agro-ecological zone (AEZ). To do so, it draws upon global land cover data bases, as well as state-of-the-art definition of AEZs from the FAO and IIASA. Agro-ecological zoning segments a parcel of land into smaller units according to agro-ecological characteristics, including: precipitation, temperature, soil type, terrain conditions, etc. Each zone has a similar combination of constraints and potential for land use.

Author(s):
Huey-Lin Lee

The paper describes the on-going project of the GTAP land use data base. We also present the GTAPE-AEZ model, which illustrates how land use and land-based emissions can be incorporated in the CGE framework for Integrated Assessment (IA) of climate change policies. We follow the FAO fashion of agro-ecological zoning (FAO, 2000; Fischer et al, 2002) to identify lands located in six zones. Lands located in a specific AEZ have similar (or homogenous) soil, landform and climatic characteristics.

Author(s):
Lee, Huey-Lin

The U.S. Department of Energy (DOE) is promoting the development of ethanol from lignocellulosic feedstocks as an alternative to conventional petroleum-based transportation fuels. DOE funds both fundamental and applied research in this area and needs a method for predicting cost benefits of many research proposals. To that end, the National Renewable Energy Laboratory (NREL) has modeled many potential process designs and estimated the economics of each process during the last 20 years. This report is an update of the ongoing process design and economic analyses at NREL.

Author(s):
Aden, A.

A new addition to the growing biofuels resources list at AgMRC is a cellulosic ethanol feasibility template developed by agricultural economists at Oklahoma State University (OSU). The purpose of the spreadsheet-based template is to give users the opportunity to assess the economics of a commercial-scale plant using enzymatic hydrolysis methods to process cellulosic materials into ethanol. The OSU Cellulosic Ethanol Feasibility Template can be downloaded and modified by the user to mimic the basic operating parameters of a proposed ethanol plant under a variety of production conditions.

Author(s):
Rodney Holcomb

This paper examines the possibilities of breaking into the cellulosic ethanol market in south Louisiana via strategic feedstock choices and the leveraging of the area’s competitive advantages. A small plant strategy is devised whereby the first-mover problem might be solved, and several scenarios are tested using Net Present Value analysis.

Author(s):
Darby, Paul

This paper introduces a spatial bioeconomic model for study of potential cellulosic biomass supply at regional scale. By modeling the profitability of alternative crop production practices, it captures the opportunity cost of replacing current crops by cellulosic biomass crops. The model draws upon biophysical crop input-output coefficients, price and cost data, and spatial transportation costs in the context of profit maximization theory. Yields are simulated using temperature, precipitation and soil quality data with various commercial crops and potential new cellulosic biomass crops.

Author(s):
Egbendewe-Mondzozo, Aklesso

When the lignocellulosic biofuels industry reaches maturity and many types of biomass sources become economically viable, management of multiple feedstock supplies – that vary in their yields, density (tons per unit area), harvest window, storage and seasonal costs, storage losses, transport distance to the production plant – will become increasingly important for the success of individual enterprises. The manager’s feedstock procurement problem is modeled as a multi-period sequence problem to account for dynamic management over time.

Author(s):
Kumarappan, Subbu

Ethanol production doubled in a very short period of time in the U.S. due to a combination of natural disasters, political tensions, and much more demand globally from petroleum. Responses to this expansion will span many sectors of society and the economy. As the Midwest gears up to rapidly add new ethanol manufacturing plants, the existing regional economy must accommodate the changes.

Author(s):
David Swenson