Skip to main content

KDF Search Results

Displaying 1 - 20 of 61

The goal of this repository is to promote transparency and ease-of-access to the U.S. Department of Energy Bioenergy Technologies Office (BETO) supported public studies involving techno-economic analysis (TEA). As such, this database summarizes the economic and technical parameters associated with the modeled biorefinery processes for the production of biofuels and bioproducts, as presented in a range of published reports and papers.

Organization:
DOE
Author(s):
Christopher Kinchin
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Water consumption and water quality continue to be key factors affecting environmental sustainability in biofuel production. This review covers the findings from biofuel water analyses published over the past 2 years to underscore the progress made, and to highlight advancements in understanding the interactions among increased production and water demand, water resource availability, and potential changes in water quality. We focus on two key areas: water footprint assessment and watershed modeling.

Organization:
DOE
Author(s):
May Wu , Zhonglong Zhang , Yiwen Chiu
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This paper describes the current Biomass Scenario Model (BSM) as of August 2013, a system dynamics model developed under the support of the U.S. Department of Energy (DOE). The model is the result of a multi-year project at the National Renewable Energy Laboratory (NREL). It is a tool designed to better understand biofuels policy as it impacts the development of the supply chain for biofuels in the United States.

Author(s):
Peterson, Steve

The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form
and in midlevel alcohol−gasoline blends with 24% vol/vol isobutanol−gasoline (IB24) and 30% vol/vol ethanol−gasoline (E30).
A single-cylinder research engine was used with an 11.85:1 compression ratio, hydraulically actuated valves, laboratory intake air,
and was capable of external exhaust gas recirculation (EGR). Experiments were conducted with all fuels to full-load conditions

Author(s):
Derek Splitter
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form
and in midlevel alcohol−gasoline blends with 24% vol/vol isobutanol−gasoline (IB24) and 30% vol/vol ethanol−gasoline (E30).
A single-cylinder research engine is used with an 11.85:1 compression ratio, hydraulically actuated valves, laboratory intake air,
and was capable of external exhaust gas recirculation (EGR). Experiments were conducted with all fuels to full-load conditions

Author(s):
Derek Splitter
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The global indirect land use change (ILUC) implications of biofuel use in the United States of America (USA) from 2001 to 2010 are evaluated with a dynamic general equilibrium model.  The effects of biofuels production on agricultural land area vary by year; from a net expansion of 0.17ha per 1000 gallons produced (2002) to a net contraction of 0.13ha per 1000 gallons (2018) in Case 1 of our simulation.  In accordance with the general narrative about the implications of biofuel policy, agricultural land area increased in many regions of the world.  However, oil-export dependent economies e

Author(s):
Gbadebo Oladosu

Relationships between people and their environment are largely defined by land use. Space and soil are needed for native plants and wildlife, as well as for crops used for food, feed, fiber, wood products and biofuel (liquid fuel derived from plant material). People also use land for homes, schools, jobs, transportation, mining and recreation. Social and economic forces influence the allocation of land to various uses. The

Author(s):
Virginia H. Dale

Despite recent claims to the contrary, plant-based fuels developed in economically and environmentally sensible ways can contribute significantly to the nation’s— indeed, the world’s—energy security while providing a host of benefits for many people worldwide.

Author(s):
Keith L. Kline , Virginia H. Dale , Russell Lee , Paul Leiby

We quantify the emergence of biofuel markets and its impact on U.S. and world agriculture for the coming decade using the multi-market, multi-commodity international FAPRI (Food and Agricultural Policy Research Institute) model. The model incorporates the trade-offs between biofuel, feed, and food production and consumption and international feedback effects of the emergence through world commodity prices and trade.

Author(s):
Fabiosa,Jacinto F.

IN THEIR REPORTS IN THE 29 FEBRUARY ISSUE (“LAND CLEARING AND THE BIOFUEL CARBON debt,” J. Fargione et al., p. 1235, and “Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change,” T. Searchinger et al., p. 1238), the authors do not provide adequate support for their claim that biofuels cause high emissions due to land-use change. The conclusions of both papers depend on the misleading premise that biofuel production causes forests and grasslands to be converted to agriculture.

Author(s):
Keith L. Kline , Virginia H. Dale

Discussions of alternative fuel and propulsion technologies for transportation often overlook the infrastructure required to make these options practical and cost-effective. We estimate ethanol production facility locations and use a linear optimization model to consider the economic costs of distributing various ethanol fuel blends to all metropolitan areas in the United States. Fuel options include corn-based E5 (5% ethanol, 95% gasoline) to E16 from corn and switchgrass, as short-term substitutes for petroleum-based fuel.

Author(s):
William R. Morrow

Coal has the largest share of utility power generation in the U.S., accounting for approximately 56% of all utility-produced electricity (U.S. DOE, 1998). Therefore, understanding the environmental implications of producing electricity from coal is an important component of any plan to reduce total emissions and resource consumption.

Author(s):
Spath, Pam

A life cycle assessment (LCA) on coal-fired power systems has been conducted to assess the environmental effects on a cradle-to-grave basis. Three different designs were studied: (1) a plant that represents the average emissions from coal-fired power plants in the U.S. today, (2) a plant that meets the New Source Performance Standards (NSPS), and (3) an advanced plant incorporating a low emission boiler system (LEBS).

Author(s):
Spath, Pam