Skip to main content

KDF Search Results

Displaying 1 - 13 of 13

There is an inextricable link between energy production and food/feed/fiber cultivation with available water resources. Currently in the United States, agriculture represents the largest sector of consumptivewater usemaking up 80.7%of the total. Electricity generation in the U.S. is projected to increase by 24 % in the next two decades and globally, the production of liquid transportation fuels are forecasted to triple over the next 25-years, having significant impacts on the import/export market and global economies.

Author(s):
Brandon C. Moore
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Excess nutrients from agriculture in the Mississippi River drainage, USA have degraded water quality in
freshwaters and contributed to anoxic conditions in downstream estuaries. Consequently, water quality is a
significant concern associated with conversion of lands to bioenergy production. This study focused on the
Arkansas-White-Red river basin (AWR), one of five major river basins draining to the Mississippi River. The
AWR has a strong precipitation gradient from east to west, and advanced cellulosic feedstocks are projected to

Author(s):
Henriette I. Jager , Latha M. Baskaran   , Peter E. Schweizer   , Anthony F. Turhollow   , Craig C. Brandt  , Raghavan Srinivasan
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management.

Author(s):
R. A. Efroymson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

In order to aid operations that promote sustainability goals, researchers and stakeholders use sustainability assessments.  Although assessments take various forms, many utilize diverse sets of indicators numbering anywhere from two to over 2000. Indices, composite indicators, or aggregate values are used to simplify high dimensional and complex data sets and to clarify assessment results. Although the choice of aggregation function is a key component in the development of the assessment, there are fewliterature examples to guide appropriate

Author(s):
Nathan Pollesch
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Water sustainability is an integral part of the environmental sustainability. Water use, water quality, and the demand on water resource for bioenergy production can have potential impacts to food, feed, and fiber production and to our social well-being. With the support from United State Department of Energy, Argonne National Laboratory is developing a life cycle water use assessment tool for biofuels production at the national scale with multiple spatial resolutions.

Author(s):
May Wu

A Workshop for Oak Ridge National Laboratory (ORNL), the US Environmental Protection Agency (EPA), and their collaborators was held on September 10-11, 2009 at ORNL. The informal workshop focused on “Sustainability of Bioenergy Systems: Cradle to Grave.” The topics covered included sustainability issues associated with feedstock production and transport, production of biofuels and by-products, and delivery and consumption by the end users.

Author(s):
Vriginia Dale

National interests in greater energy independence, concurrent with favorable market forces, have driven increased production of corn-based ethanol in the United States and research into the next generation of biofuels. The trend is changing the national agricultural landscape and has raised concerns about potential impacts on the nation?s water resources. This report examines some of the key issues and identifies opportunities for shaping policies that help to protect water resources.

Author(s):
Schnoor, Jerald

The Energy Independence and Security Act (EISA) of 2007 established specific targets for the production of biofuel in the United States. Until advanced technologies become commercially viable, meeting these targets will increase demand for traditional agricultural commodities used to produce ethanol, resulting in land-use, production, and price changes throughout the farm sector. This report summarizes the estimated effects of meeting the EISA targets for 2015 on regional agricultural production and the environment. Meeting EISA targets for ethanol production is estimated to expand U.S.

Author(s):
Malcolm, Scott A.

We assessed current water consumption during liquid fuel production, evaluating major steps of fuel lifecycle for five fuel pathways: bioethanol from corn, bioethanol from cellulosic feedstocks, gasoline from U.S. conventional crude obtained from onshore wells, gasoline from Saudi Arabian crude, and gasoline from Canadian oil sands.

The National Hydrography Dataset (NHD) and Watershed Boundary Dataset (WBD) are used to portray surface water on The National Map. The NHD represents the drainage network with features such as rivers, streams, canals, lakes, ponds, coastline, dams, and streamgages. The WBD represents drainage basins as enclosed areas in eight different size categories. The NHD is portrayed on the US Topo map product produced by the USGS and the NHD and WBD can be viewed on the Hydrography Viewer or the general mapping oriented The National Map Viewer.

Author(s):
U.S. Geological Survey

Prior studies have estimated that a liter of bioethanol requires 263−784 L of water from corn farm to fuel pump, but these estimates have failed to account for the widely varied regional irrigation practices. By using regional time-series agricultural and ethanol production data in the U.S., this paper estimates the state-level field-to-pump water requirement of bioethanol across the nation. The results indicate that bioethanol’s water requirements can range from 5 to 2138 L per liter of ethanol depending on regional irrigation practices.

Author(s):
Yi-Wen Chiu

Ethanol production using corn grain has exploded in the Upper Midwest. This new demand for corn, and the new opportunities
for value-added processing and cattle production in rural communities, has created the best economic development
opportunity in the Corn Belt states in a generation or more. Ethanol demand has increased rapidly recently because of favorable
economics of ethanol vs. gasoline, and the need for a performance enhancer to replace MTBE (methyl tertiary-butyl ether)

Author(s):
Dennis Keeney