Skip to main content

KDF Search Results

Displaying 1 - 12 of 12

The Biomass Program is one of the nine technology development programs within the Office of Energy Efficiency and Renewable Energy (EERE) at the U.S. Department of Energy (DOE). This 2011 Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Biomass Program. It identifies the research, development, demonstration, and deployment (RDD&D) activities the Program will focus on over the next five years, and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation.

Author(s):
Office of the Biomass Program
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The U.S. Department of Energy (DOE) is promoting the development of ethanol from lignocellulosic feedstocks as an alternative to conventional petroleum-based transportation fuels. DOE funds both fundamental and applied research in this area and needs a method for predicting cost benefits of many research proposals. To that end, the National Renewable Energy Laboratory (NREL) has modeled many potential process designs and estimated the economics of each process during the last 20 years. This report is an update of the ongoing process design and economic analyses at NREL.

Author(s):
Aden, A.

A new addition to the growing biofuels resources list at AgMRC is a cellulosic ethanol feasibility template developed by agricultural economists at Oklahoma State University (OSU). The purpose of the spreadsheet-based template is to give users the opportunity to assess the economics of a commercial-scale plant using enzymatic hydrolysis methods to process cellulosic materials into ethanol. The OSU Cellulosic Ethanol Feasibility Template can be downloaded and modified by the user to mimic the basic operating parameters of a proposed ethanol plant under a variety of production conditions.

Author(s):
Rodney Holcomb

This paper examines the possibilities of breaking into the cellulosic ethanol market in south Louisiana via strategic feedstock choices and the leveraging of the area’s competitive advantages. A small plant strategy is devised whereby the first-mover problem might be solved, and several scenarios are tested using Net Present Value analysis.

Author(s):
Darby, Paul

This paper introduces a spatial bioeconomic model for study of potential cellulosic biomass supply at regional scale. By modeling the profitability of alternative crop production practices, it captures the opportunity cost of replacing current crops by cellulosic biomass crops. The model draws upon biophysical crop input-output coefficients, price and cost data, and spatial transportation costs in the context of profit maximization theory. Yields are simulated using temperature, precipitation and soil quality data with various commercial crops and potential new cellulosic biomass crops.

Author(s):
Egbendewe-Mondzozo, Aklesso

When the lignocellulosic biofuels industry reaches maturity and many types of biomass sources become economically viable, management of multiple feedstock supplies – that vary in their yields, density (tons per unit area), harvest window, storage and seasonal costs, storage losses, transport distance to the production plant – will become increasingly important for the success of individual enterprises. The manager’s feedstock procurement problem is modeled as a multi-period sequence problem to account for dynamic management over time.

Author(s):
Kumarappan, Subbu

Ethanol production doubled in a very short period of time in the U.S. due to a combination of natural disasters, political tensions, and much more demand globally from petroleum. Responses to this expansion will span many sectors of society and the economy. As the Midwest gears up to rapidly add new ethanol manufacturing plants, the existing regional economy must accommodate the changes.

Author(s):
David Swenson

A dry-grind ethanol from corn process analysis is performed. After defining a complete model of the process, a pinch technology analysis is carried out to optimise energy and water demands. The so-defined base case is then discussed in terms of production costs and process profitability. A detailed sensitivity analysis on the most important process and financial variables is carried out. The possibility to adopt different alternatives for heat and power generation combined to the process is evaluated.

Author(s):
Giada Franceschin

In the last decade biofuel production has been driven by governmental policies. This article reviews the national strategy plans of the world’s leading producers. Particular attention is dedicated to blending targets, support schemes and feedstock use. Individual country profiles are grouped by continent and include North America (Canada and the US), South America (Argentina, Brazil, and Colombia), Europe (the European Union, France, and Germany), Asia (China, India, Indonesia, Malaysia, and Thailand) and Australia.

Author(s):
Giovanni Sorda

The important key technologies required for the successful biological conversion of lignocellulosic biomass to ethanol have been extensively reviewed. The biological process of ethanol fuel production utilizing lignocellulose as substrate requires: (1) delignification to liberate cellulose and hemicellulose from their complex with lignin, (2) depolymerization of the carbohydrate polymers (cellulose and hemicellulose) to produce free sugars, and (3) fermentation of mixed hexose and pentose sugars to produce ethanol.

Author(s):
Jeewon Lee

Enhanced environmental quality, fuel security, and economic development along with reduced prices of ethanol-gasoline blends are often used as justifications for the U.S. federal excise tax exemption on ethanol fuels. However, the possible effect of increased overall consumption of fuel in response to lower total price, mitigating the environmental and fuel security benefits, are generally not considered. Taking this price response into account, the optimal U.S. ethanol subsidy is derived.

Author(s):
Dmitry Vedenov