Skip to main content

KDF Search Results

Displaying 1 - 20 of 20

This dataset was utilized in a report to highlight parameters that affect near-term sustainable supply of corn stover and forest resources at $56 and $74 per dry ton delivered. While the report focus is restricted to 2018, the modeling runs are available from 2016-2022. In the 2016 Billion-ton Report (BT16), two stover cases were presented. In this dataset, we vary technical levels of those assumptions to measure stover supply response and to evaluate the major determinants of stover supply.

Author(s):
Maggie Davis , Laurence Eaton , Matt Langholtz
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Social and economic indicators can be used to support design of sustainable energy systems. Indicators representing categories of social well-being, energy security, external trade, profitability, resource conservation, and social acceptability have not yet been measured in published sustainability assessments for commercial algal biofuel facilities.

Organization:
DOE
Author(s):
Rebecca A. Efroymson , Virginia H. Dale , Matthew H. Langholtz
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management.

Author(s):
R. A. Efroymson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels.

Author(s):
Department of Energy

Meeting the Energy Independence and Security Act (EISA) renewable fuels goals requires development
of a large sustainable domestic supply of diverse biomass feedstocks. Macroalgae, also known as
seaweed, could be a potential contributor toward this goal. This resource would be grown in marine
waters under U.S. jurisdiction and would not compete with existing land-based energy crops.
Very little analysis has been done on this resource to date. This report provides information needed for an

Organization:
DOE
Author(s):
Roesijadi, G

The Biomass Program is one of the nine technology development programs within the Office of Energy Efficiency and Renewable Energy (EERE) at the U.S. Department of Energy (DOE). This 2011 Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Biomass Program. It identifies the research, development, demonstration, and deployment (RDD&D) activities the Program will focus on over the next five years, and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation.

Author(s):
Office of the Biomass Program
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Discussions of alternative fuel and propulsion technologies for transportation often overlook the infrastructure required to make these options practical and cost-effective. We estimate ethanol production facility locations and use a linear optimization model to consider the economic costs of distributing various ethanol fuel blends to all metropolitan areas in the United States. Fuel options include corn-based E5 (5% ethanol, 95% gasoline) to E16 from corn and switchgrass, as short-term substitutes for petroleum-based fuel.

Author(s):
William R. Morrow

This model was developed at Idaho National Laboratory and focuses on crop production. This model is an agricultural cultivation and production model, but can be used to estimate biomass crop yields.

Author(s):
Hoskinson, R.L.

National Centers for Coastal Ocean Science (NCCOS) has published the availability of funds and Announcements of Opportunity for the competitive programs.

The Monitoring and Event Response for Harmful Algal Blooms (MERHAB) Research Program builds capacity along our coasts for enhanced HAB monitoring and response. This helps NOAA and state partners identify when beaches, shellfisheries, and marine animals are at risk from harmful algae, and to make informed decisions that protect public health and safeguard our coastal economies.

NOAA and other federal agencies administer a variety of financial assistance programs that support sustainable aquaculture in the United States. Funding may address a variety of issues such as environmental monitoring, recirculating aquaculture systems, shellfish farming, alternative feeds for aquaculture, new species research, and offshore aquaculture. The programs below outline NOAA-managed funding opportunities for aquaculture and funding opportunities available through other agencies or venues.

NOAA's National Centers for Coastal Ocean Science's (NCCOS's) PCMHAB program funds research to move promising technologies for preventing, controlling, or mitigating HABs and their impacts through development, to demonstration, and, finally application, culminating in wide spread use in the field by end-users. A more detailed description of the program and its projects are available at the link below.

National biomass feedstock assessments (Perlack et al., 2005; DOE, 2011) have focused on cellulosic biomass resources, and have not included potential algal feedstocks. Recent research (Wigmosta et al., 2011) provides spatially-­‐explicit information on potential algal biomass and oil yields, water use, and facility locations. Oak Ridge National Laboratory and Pacific Northwest National Lab are collaborating to integrate terrestrial and algal feedstock resource assessments. This poster describes preliminary results of this research.

Author(s):
Matthew Langholtz
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Fast-growing, oil-producing species of microalgae have become the focus of attention for both biomass and biodiesel biofuels, but questions remain about scalability, economics, and the competition between large-scale microalgae cultivation and agriculture, with regard to water, fertilizer, and land use. By cultivating microalgae on domestic wastewater, the water and fertilizer problems can be overcome, and by using algae for improved wastewater treatment, economic and environmental benefits can be realized.

Production costs of bio-ethanol from sugarcane in Brazil have declined continuously over the last three decades. The aims of this study are to determine underlying reasons behind these cost reductions, and to assess whether the experience curve concept can be used to describe the development of feedstock costs and industrial production costs. The analysis was performed using average national costs data, a number of prices (as a proxy for production costs) and data on annual Brazilian production volumes.

Author(s):
J.D. van den Wall Bake

The location of ethanol plants is determined by infrastructure, product and input markets, fiscal attributes of local communities, and state and federal incentives. This empirical
analysis uses probit regression along with spatial clustering methods to analyze investment activity of ethanol plants at the county level for the lower U.S. 48 states from 2000 to 2007.
The availability of feedstock dominates the site selection decision. Other factors, such as access to navigable rivers or railroads, product markets, producer credit and excise tax

Author(s):
D.M. Lambert