Skip to main content

KDF Search Results

Displaying 1 - 20 of 21

Abstract: Cellulosic-based biofuels are needed to help meet energy needs and to strengthen rural investment and development in the midwestern United States (US). This analysis identifies 11 categories of indicators to measure progress toward sustainability that should be monitored to determine if ecosystem and social services are being maintained, enhanced, or disrupted by production, harvest, storage, and transport of cellulosic feedstock.

Author(s):
Virginia H. Dale , Keith L. Kline , Tom L. Richard , Doug L. Karlen
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The development of modern high efficiency bioenergy technologies has the
potential to improve energy security and access while reducing environmental impacts
and stimulating low-carbon development. While modern bioenergy production is
increasing in the world, it still makes a small contribution to our energy matrix.
At present, approximately 87% of energy demand is satisfied by energy produced
through consumption of fossil fuels. Although the International Energy Agency (IEA)

Author(s):
Joly, CA , Huntley, BJ , Verdade, LM , Dale, VH , Mace, G , Muok, B , Ravindranath, NH

The Biomass Scenario Model (BSM) is a system dynamics model that represents the entire biomass-to-biofuels supply chain, from feedstock to fuel use. It is a tool designed to better understand biofuels policy as it impacts the development of the supply chain for biofuels in the United States.

This page houses the BSM articles that have been published. For more information, see the link to NREL's list of publications on the BSM.

For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management.

Author(s):
R. A. Efroymson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

As with all land transformation activities, effects on biodiversity and ecosystem services of producing feedstocks for biofuels are highly variable and context specific.  Advances toward more sustainable biofuel production benefit from a system's perspective, recognizing spatial heterogeneity and scale, landscape-design principles, and addressing the influences of context such as the particular products and their distribution, policy background, stakeholder values, location, temporal influences, and baseline conditions.  Deploying biofuels in a manner to reduce effects on biodiversity

Author(s):
C.A. Joly
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c.

Author(s):
Virginia H. Dale , Esther S. Parish , Keith L. Kline
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Bioenergy Technologies Office hosted a workshop on Incorporating Bioenergy into Sustainable Landscape Designs on June 24-26 in partnership with Argonne and Oak Ridge National Laboratories. Landscape design offers a promising means for sustainably increasing bioenergy production while maintaining or enhancing other ecosystem services.

Author(s):
Bioenergy Technologies Office
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Bioenergy Technologies Office hosted two workshops on Incorporating Bioenergy into Sustainable Landscape Designs with Oak Ridge and Argonne National Laboratories. The first workshop focused on forestry landscapes and was held in New Bern, NC, from March 4-6, 2014. The second workshop focused on agricultural landscapes and was held in Argonne, IL, from June 24-26, 2014. Landscape design offers a promising means for sustainably increasing bioenergy production while maintaining or enhancing other ecosystem services.

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Bioenergy Technologies Office hosted a workshop on Incorporating Bioenergy into Sustainable Landscape Designs on March 4-6 in partnership with Oak Ridge and Argonne National Laboratories. Landscape design offers a promising means for sustainably increasing bioenergy production while maintaining or enhancing other ecosystem services.

Author(s):
Bioenergy Technologies Office
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The increasing demand for bioenergy crops presents our society with the opportunity to design more sustainable landscapes. We have created a Biomass Location for Optimal Sustainability Model (BLOSM) to test the hypothesis that landscape design of cellulosic bioenergy crop plantings may simultaneously improve water quality (i.e. decrease concentrations of sediment, total phosphorus, and total nitrogen) and increase profits for farmer-producers while achieving a feedstock-production goal.

Author(s):
Parish, ES

Defining and measuring sustainability of bioenergy systems are difficult because the systems are complex, the science is in early stages of development, and there is a need to generalize what are inherently contextspecific enterprises. These challenges, and the fact that decisions are being made now, create a need for improved communications among scientists as well as between scientists and decision makers.

Author(s):
Virginia H. Dale

Landscape implications of bioenergy feedstock choices are significant and depend on land-use practices and their environmental impacts. Although land-use changes and carbon emissions associated with bioenergy feedstock production are dynamic and complicated, lignocellulosic feedstocks may offer opportunities that enhance sustainability when compared to other transportation fuel alternatives.

Author(s):
Virginia H. Dale

Relationships between people and their environment are largely defined by land use. Space and soil are needed for native plants and wildlife, as well as for crops used for food, feed, fiber, wood products and biofuel (liquid fuel derived from plant material). People also use land for homes, schools, jobs, transportation, mining and recreation. Social and economic forces influence the allocation of land to various uses.

Author(s):
Virginia Dale

Relationships between people and their environment are largely defined by land use. Space and soil are needed for native plants and wildlife, as well as for crops used for food, feed, fiber, wood products and biofuel (liquid fuel derived from plant material). People also use land for homes, schools, jobs, transportation, mining and recreation. Social and economic forces influence the allocation of land to various uses. The

Author(s):
Virginia H. Dale

The National Renewable Energy Laboratory (NREL) originally developed this application for biopower with funding from the Environmental Protection Agency's Blue Skyways Collaborative. The Department of Energy's Office of Biomass Program provided funding for biofuels functionality. More information on funding agencies is available: http://www.blueskyways.org and http://www.eere.energy.gov/biomass/.

Use the Alternative Fuels Data Center (AFDC) station locator to find LNG stations across the U.S.

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Use the Alternative Fuels Data Center (AFDC) station locator to find hydrogen fuel stations across the U.S.

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Use the Alternative Fuels Data Center (AFDC) station locator to find compressed natural gas stations across the U.S.

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Use the Alternative Fuels Data Center (AFDC) station locator to find electric fuel stations across the U.S.

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Search for and download detailed data on fueling stations for several different types of alternative fuels.

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.