Skip to main content

KDF Search Results

Displaying 1 - 10 of 15

The objective of this research project was to assess whether standard forestry best management practices (BMPs) are sufficient to protect stream water quality from intensive silviculture associated with short-rotation woody crop (SRWC) production for bioenergy. Forestry BMPs are designed to prevent the movement of deleterious quantities of nutrients, herbicides, sediments, and thermal energy (sunlight hitting stream channels) from clear-cuts and plantations to surface waters.

Organization:
DOE
Author:
Natalie A. Griffiths , C. Rhett Jackson , John I. Blake , Johnson Jeffers , Benjamin M. Rau , Gregory Starr , Kellie Vache
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Link to the website with documentation and download instructions for the PNNL Global Change Assessment Model (GCAM), a community model or long-term, global energy, agriculture, land use, and emissions. BioEnergy production, transformation, and use is an integral part of GCAM modeling and scenarios.

http://jgcri.github.io/gcam-doc/

Author:
Marshall Wise
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Model-data comparisons are always challenging, especially when working at a large spatial scale and evaluating multiple response variables. We implemented the Soil and Water Assessment Tool (SWAT) to simulate water quantity and quality for the Tennessee River Basin.

Author:
Gangsheng Wang
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

With the goal of understanding environmental effects of a growing bioeconomy, the U.S. Department of Energy (DOE), national laboratories, and U.S. Forest Service research laboratories, together with academic and industry collaborators, undertook a study to estimate environmental effects of potential biomass production scenarios in the United States, with an emphasis on agricultural and forest biomass. Potential effects investigated include changes in soil organic carbon (SOC), greenhouse gas (GHG) emissions, water quality and quantity, air emissions, and biodiversity.

Author:
R. A. Efroymson , M. H. Langholtz , E. Johnson , B. J. Stokes
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

This dataset reports the pre-treatment hydrology and pre- and post-treatment water quality data from a watershed-scale experiment that is evaluating the effects of growing short-rotation loblolly pine for bioenergy on water quality and quantity in the southeastern U.S. The experiment is taking place on the Savannah River Site, near New Ellenton, South Carolina, USA.  Beginning in 2010, water quality and hydrology were measured for two years in 3 watersheds (R, B, C).

Author:
Natalie A. Griffiths , C. Rhett Jackson , Jeffrey J. McDonnell , Julian Klaus , Enhao Du , Menberu M. Bitew , Allison M. Fortner , Kevin L. Fouts , Kitty McCracken , Jana R. Phillips
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Understanding the complex interactions among food security, bioenergy sustainability, and resource management
requires a focus on specific contextual problems and opportunities. The United Nations’ 2030 Sustainable
Development Goals place a high priority on food and energy security; bioenergy plays an important role in
achieving both goals. Effective food security programs begin by clearly defining the problem and asking, ‘What
can be done to assist people at high risk?’ Simplistic global analyses, headlines, and cartoons that blame biofuels

Author:
KEITH L. KLINE , SIWA MSANGI2 , VIRGINIA H. DALE3 , JEREMY WOODS4 , GLAUCIA M. SOUZA5 , PATRICIA OSSEWEIJER6 , JOY S. CLANCY7 , JORGE A. HILBERT8 , FRANCIS X. JOHNSON9 , PATRICK C. MCDONNELL10 , HARRIET K. MUGERA11
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Federal Activities Report on the Bioeconomy has been prepared to emphasize the significant potential for an even stronger U.S. bioeconomy through the production and use of biofuels, bioproducts, and biopower. Bioeconomy activities have already touched on the interests of many federal agencies and offices. This report is intended to educate the public on the wide-ranging, federally funded activities that are helping to bolster the bioeconomy.

Author:
The Biomass Research and Development (R&D) Board
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Conventional feedstock supply systems exist and have been developed for traditional agriculture and forestry systems. These conventional feedstock supply systems can be effective in high biomass-yielding areas (such as for corn stover in Iowa and plantation-grown pine trees in the southern United States), but they have their limits, particularly with respect to addressing feedstock quality and reducing feedstock supply risk to biorefineries. They also are limited in their ability to efficiently deliver energy crops.

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Understanding the development of the biofuels industry in the United States is important to policymakers and industry. The Biomass Scenario Model (BSM) is a system dynamics model of the biomass-to-biofuels system that can be used to explore policy effects on biofuels development. Because of the complexity of the model, as well as the wide range of possible future conditions that affect biofuels industry development, we have not developed a single reference case but instead developed a set of specific scenarios that provide various contexts for our analyses.

Author:
Inman, D.; Vimmerstedt, L.; Bush, B.; Peterson, S.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Biomass Scenario Model (BSM) is a system dynamics model that represents the entire biomass-to-biofuels supply chain, from feedstock to fuel use. The BSM is a complex model that has been used for extensive analyses; the model and its results can be better understood if input data used for initialization and calibration are well-characterized. It has been carefully validated and calibrated against the available data, with data gaps filled in using expert opinion and internally consistent assumed values.

Author:
Lin, Y. ; , Newes, E. , Bush, B. , Peterson, S. , Stright, D.
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.