Skip to main content

KDF Search Results

Displaying 1 - 20 of 20

The development of modern high efficiency bioenergy technologies has the
potential to improve energy security and access while reducing environmental impacts
and stimulating low-carbon development. While modern bioenergy production is
increasing in the world, it still makes a small contribution to our energy matrix.
At present, approximately 87% of energy demand is satisfied by energy produced
through consumption of fossil fuels. Although the International Energy Agency (IEA)

Author(s):
Joly, CA , Huntley, BJ , Verdade, LM , Dale, VH , Mace, G , Muok, B , Ravindranath, NH

The Biomass Scenario Model (BSM) is a system dynamics model that represents the entire biomass-to-biofuels supply chain, from feedstock to fuel use. It is a tool designed to better understand biofuels policy as it impacts the development of the supply chain for biofuels in the United States.

This page houses the BSM articles that have been published. For more information, see the link to NREL's list of publications on the BSM.

For analyzing sustainability of algal biofuels, we identify 16 environmental indicators that fall into six categories: soil quality, water quality and quantity, air quality, greenhouse gas emissions, biodiversity, and productivity. Indicators are selected to be practical, widely applicable, predictable in response, anticipatory of future changes, independent of scale, and responsive to management.

Author(s):
R. A. Efroymson
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

As with all land transformation activities, effects on biodiversity and ecosystem services of producing feedstocks for biofuels are highly variable and context specific.  Advances toward more sustainable biofuel production benefit from a system's perspective, recognizing spatial heterogeneity and scale, landscape-design principles, and addressing the influences of context such as the particular products and their distribution, policy background, stakeholder values, location, temporal influences, and baseline conditions.  Deploying biofuels in a manner to reduce effects on biodiversity

Author(s):
C.A. Joly
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c.

Author(s):
Virginia H. Dale , Esther S. Parish , Keith L. Kline
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Relationships between people and their environment are largely defined by land use. Space and soil are needed for native plants and wildlife, as well as for crops used for food, feed, fiber, wood products and biofuel (liquid fuel derived from plant material). People also use land for homes, schools, jobs, transportation, mining and recreation. Social and economic forces influence the allocation of land to various uses.

Author(s):
Virginia Dale

Relationships between people and their environment are largely defined by land use. Space and soil are needed for native plants and wildlife, as well as for crops used for food, feed, fiber, wood products and biofuel (liquid fuel derived from plant material). People also use land for homes, schools, jobs, transportation, mining and recreation. Social and economic forces influence the allocation of land to various uses. The

Author(s):
Virginia H. Dale

In 2013 a series of meetings was held across the US with each of the Sun Grant Regional Feedstock Partnership crop teams and the resource assessment team, led by the Oregon State University and Oak Ridge National Laboratory, to review, standardize, and verify energy crop yield trials from 2007-2012 and assimilate their outcomes into a national model of biomass yield suitability.

This document provides presentation style maps of potential crop yield of dedicated bioenergy crops from the publication "Productivity Potential of Bioenergy Crops from the Sun Grant Regional Feedstock Partnership." 2013. Eaton, Laurence, Chris Daly, Mike Halbleib, Vance Owens, Bryce Stokes. ORNL/TM-2013/574.

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Switchgrass (Panicum virgatum L.) is a perennial grass native to the United States that has been studied as a sustainable source of biomass fuel. Although many field-scale studies have examined the potential of this grass as a bioenergy crop, these studies have not been integrated. In this study, we present an empirical model for switchgrass yield and use this model to predict yield for the conterminous United States. We added environmental covariates to assembled yield data from field trials based on geographic location. We developed empirical models based on these data.

Author(s):
Henriette I. Jager , Latham M. Baskaran , Craig C. Brandt , Ethan B. Davis , Carla A. Gunderson , Stan D. Wullschleger

FAOSTAT provides time-series and cross sectional data relating to food and agriculture for some 200 countries.

The national version of FAOSTAT, CountrySTAT, is being developed and implemented in a number of target countries, primarily in sub-saharan Africa. It will offer a two-way data exchange facility between countries and FAO as well as a facility to store data at the national and sub-national levels.

Author(s):
FAO

This database contains current and historical official USDA data on production, supply and distribution of agricultural commodities for the United States and key producing and consuming countries.

Author(s):
USDA Foreign Agriculture Service

The National Renewable Energy Laboratory (NREL) originally developed this application for biopower with funding from the Environmental Protection Agency's Blue Skyways Collaborative. The Department of Energy's Office of Biomass Program provided funding for biofuels functionality. More information on funding agencies is available: http://www.blueskyways.org and http://www.eere.energy.gov/biomass/.

Use the Alternative Fuels Data Center (AFDC) station locator to find LNG stations across the U.S.

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Use the Alternative Fuels Data Center (AFDC) station locator to find hydrogen fuel stations across the U.S.

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Use the Alternative Fuels Data Center (AFDC) station locator to find compressed natural gas stations across the U.S.

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Use the Alternative Fuels Data Center (AFDC) station locator to find electric fuel stations across the U.S.

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Search for and download detailed data on fueling stations for several different types of alternative fuels.

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Alternative Fuels Data Center (AFDC) Station Locator identifies E-85 Fuel station locations across the country.

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

For several years the Idaho National Laboratory (INL) has been developing a Decision Support System for Agriculture (DSS4Ag) which determines the economically optimum recipe of various fertilizers to apply at each site in a field to produce a crop, based on the existing soil fertility at each site, as well as historic production information and current prices of fertilizers and the forecast market price of the crop at harvest.

Author(s):
Hoskinson Reed L.