Skip to main content

KDF Search Results

Displaying 1 - 14 of 14

This dataset was utilized in a report to highlight parameters that affect near-term sustainable supply of corn stover and forest resources at $56 and $74 per dry ton delivered. While the report focus is restricted to 2018, the modeling runs are available from 2016-2022. In the 2016 Billion-ton Report (BT16), two stover cases were presented. In this dataset, we vary technical levels of those assumptions to measure stover supply response and to evaluate the major determinants of stover supply.

Author(s):
Maggie Davis , Laurence Eaton , Matt Langholtz
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The Biomass Program is one of the nine technology development programs within the Office of Energy Efficiency and Renewable Energy (EERE) at the U.S. Department of Energy (DOE). This 2011 Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Biomass Program. It identifies the research, development, demonstration, and deployment (RDD&D) activities the Program will focus on over the next five years, and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation.

Author(s):
Office of the Biomass Program
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

The market for E85�a fuel blend of 85 percent ethanol and 15 percent gasoline�is small
but growing rapidly. I use data for E85 sales at fueling stations in Minnesota to estimate
demand for E85 as a function of retail E85 and gasoline prices. I find that demand is
highly sensitive to price changes, with an own-price elasticity as high as -13 and a gasolineprice
elasticity as high as 16 at sample mean price levels. Demand is most sensitive to
price changes when the relative price of E85 is at an intermediate level, at which point

Author(s):
Soren Anderson

Discussions of alternative fuel and propulsion technologies for transportation often overlook the infrastructure required to make these options practical and cost-effective. We estimate ethanol production facility locations and use a linear optimization model to consider the economic costs of distributing various ethanol fuel blends to all metropolitan areas in the United States. Fuel options include corn-based E5 (5% ethanol, 95% gasoline) to E16 from corn and switchgrass, as short-term substitutes for petroleum-based fuel.

Author(s):
William R. Morrow

Ethanol is a very attractive fuel from an end-use perspective because it has a high chemical octane number and a high
latent heat of vaporization. When an engine is optimized to take advantage of these fuel properties, both efficiency and
power can be increased through higher compression ratio, direct fuel injection, higher levels of boost, and a reduced need
for enrichment to mitigate knock or protect the engine and aftertreatment system from overheating.

Author(s):
James Szybist
Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

A key objective of U.S. energy policy is to increase biofuel use by highway vehicles to 36 billion gallons per year by 2022. The Energy Independence and Security Act envisions that nearly all of this target will be met by gasohol (E10) or neat ethanol (E85). Since the market for blending ethanol with gasoline at 10% by volume will saturate at about 15 billion gallons, most of the ethanol will need to be sold in the form of E85 unless higher order blends are approved by automakers and the Environmental Protection Agency.

Author(s):
David L. Greene

One fundamental issue influencing the economic viability of the ethanol industry is consumers' demand responsiveness to both gasoline and ethanol price changes. This paper presents an alternative approach by estimating the geographic variation of price elasticity of demand for ethanol across the study area.

Author(s):
Hayk Khachatryan

The Alternative Fuels Data Center (AFDC) Station Locator identifies E-85 Fuel station locations across the country.

Funded from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office.

Production costs of bio-ethanol from sugarcane in Brazil have declined continuously over the last three decades. The aims of this study are to determine underlying reasons behind these cost reductions, and to assess whether the experience curve concept can be used to describe the development of feedstock costs and industrial production costs. The analysis was performed using average national costs data, a number of prices (as a proxy for production costs) and data on annual Brazilian production volumes.

Author(s):
J.D. van den Wall Bake

The location of ethanol plants is determined by infrastructure, product and input markets, fiscal attributes of local communities, and state and federal incentives. This empirical
analysis uses probit regression along with spatial clustering methods to analyze investment activity of ethanol plants at the county level for the lower U.S. 48 states from 2000 to 2007.
The availability of feedstock dominates the site selection decision. Other factors, such as access to navigable rivers or railroads, product markets, producer credit and excise tax

Author(s):
D.M. Lambert

In 1997, eight E85 (85% ethanol; 15% gasoline) fuel pumps were installed at separate retail fuel stations in Minnesota to provide high-blend ethanol fuel to flexible fuel vehicle (FFV) owners. FFVs capable of utilizing gasoline, E85, or any mixture of the two, were beginning to be mass produced by vehicle manufacturers and distributed through fleet and retail sales nationwide. These state-level E85 efforts were part of larger federal and state policies and programs promoting the use of alternative transportation fuels to displace traditional gasoline and diesel fuel, which continue today.

Author(s):
P. Bromiley